Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 22(15): 6639-49, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12151543

RESUMO

In Parkinson's disease, progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SN) leads to debilitating motor dysfunction. One current therapy aims at exogenous cellular replacement of dopaminergic function by transplanting fetal midbrain cells into the striatum, the main projection area of the SN. However, results using this approach have shown variable success. It has been proposed that cellular replacement by endogenous stem/progenitor cells may be useful for therapeutic interventions in neurodegenerative diseases, including Parkinson's disease. Although it is widely accepted that progenitor cells are present in different areas of the adult CNS, it is unclear whether such cells reside in the adult SN and whether they have the potential to replace degenerating neurons. Here, we describe a population of actively dividing progenitor cells in the adult SN, which in situ give rise to new mature glial cells but not to neurons. However, after removal from the SN, these progenitor cells immediately have the potential to differentiate into neurons. Transplantation of freshly isolated SN progenitor cells into the adult hippocampus showed that these cells also have a neuronal potential under in vivo conditions. These results suggest that progenitor cells reside in the adult SN and can give rise to new neurons when exposed to appropriate environmental signals. This developmental potential of SN progenitor cells might be useful for future endogenous cell replacement strategies in Parkinson's disease.


Assuntos
Neurônios/citologia , Transtornos Parkinsonianos/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Substância Negra/citologia , Animais , Antígenos de Diferenciação/biossíntese , Astrócitos/citologia , Bromodesoxiuridina , Contagem de Células , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Separação Celular , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde , Hipocampo/citologia , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Neurônios/patologia , Neurônios/fisiologia , Oligodendroglia/citologia , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Fenótipo , Ratos , Ratos Endogâmicos F344 , Células-Tronco/metabolismo , Substância Negra/patologia
2.
Proc Natl Acad Sci U S A ; 100(11): 6777-82, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12748381

RESUMO

DNA methylation-mediated epigenetic regulation plays critical roles in regulating mammalian gene expression, but its role in normal brain function is not clear. Methyl-CpG binding protein 1 (MBD1), a member of the methylated DNA-binding protein family, has been shown to bind methylated gene promoters and facilitate transcriptional repression in vitro. Here we report the generation and analysis of MBD1-/- mice. MBD1-/- mice had no detectable developmental defects and appeared healthy throughout life. However, we found that MBD1-/- neural stem cells exhibited reduced neuronal differentiation and increased genomic instability. Furthermore, adult MBD1-/- mice had decreased neurogenesis, impaired spatial learning, and a significant reduction in long-term potentiation in the dentate gyrus of the hippocampus. Our findings indicate that DNA methylation is important in maintaining cellular genomic stability and is crucial for normal neural stem cell and brain functions.


Assuntos
Ilhas de CpG , Proteínas de Ligação a DNA/genética , Hipocampo/fisiologia , Animais , Diferenciação Celular , Hipocampo/citologia , Camundongos , Camundongos Knockout , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA