Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 91: 284-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27015692

RESUMO

Using a Drosophila model of MECP2 gain-of-function, we identified memory associated KIBRA as a target of MECP2 in regulating dendritic growth. We found that expression of human MECP2 increased kibra expression in Drosophila, and targeted RNAi knockdown of kibra in identified neurons fully rescued dendritic defects as induced by MECP2 gain-of-function. Validation in mouse confirmed that Kibra is similarly regulated by Mecp2 in a mammalian system. We found that Mecp2 gain-of-function in cultured mouse cortical neurons caused dendritic impairments and increased Kibra levels. Accordingly, Mecp2 loss-of-function in vivo led to decreased Kibra levels in hippocampus, cortex, and cerebellum. Together, our results functionally link two neuronal genes of high interest in human health and disease and highlight the translational utility of the Drosophila model for understanding MECP2 function.


Assuntos
Córtex Cerebral/patologia , Hipocampo/patologia , Memória/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/metabolismo , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Hipocampo/metabolismo , Humanos , Camundongos
2.
PLoS One ; 11(7): e0159632, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442528

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.


Assuntos
Apoptose , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Animais , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Modelos Biológicos , Atividade Motora , Neurônios Motores/metabolismo , Proteínas Mutantes/metabolismo , Fosforilação , Fosfosserina/metabolismo , Domínios Proteicos , Fatores de Transcrição/metabolismo , Transfecção
3.
Neuropsychopharmacology ; 37(10): 2285-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22692564

RESUMO

The immediate-early gene early growth response 3 (Egr3) is associated with schizophrenia and expressed at reduced levels in postmortem patients' brains. We have previously reported that Egr3-deficient (Egr3(-/-)) mice display reduced sensitivity to the sedating effects of clozapine compared with wild-type (WT) littermates, paralleling the heightened tolerance of schizophrenia patients to antipsychotic side effects. In this study, we have used a pharmacological dissection approach to identify a neurotransmitter receptor defect in Egr3(-/-) mice that may mediate their resistance to the locomotor suppressive effects of clozapine. We report that this response is specific to second-generation antipsychotic agents (SGAs), as first-generation medications suppress the locomotor activity of Egr3(-/-) and WT mice to a similar degree. Further, in contrast to the leading theory that sedation by clozapine results from anti-histaminergic effects, we show that H1 histamine receptors are not responsible for this effect in C57BL/6 mice. Instead, selective serotonin 2A receptor (5HT(2A)R) antagonists ketanserin and MDL-11939 replicate the effect of SGAs, repressing the activity in WT mice at a dosage that fails to suppress the activity of Egr3(-/-) mice. Radioligand binding revealed nearly 70% reduction in 5HT(2A)R expression in the prefrontal cortex of Egr3(-/-) mice compared with controls. Egr3(-/-) mice also exhibit a decreased head-twitch response to 5HT(2A)R agonist 1-(2,5-dimethoxy 4-iodophenyl)-2-amino propane (DOI). These findings provide a mechanism to explain the reduced sensitivity of Egr3(-/-) mice to the locomotor suppressive effects of SGAs, and suggest that 5HT(2A)Rs may also contribute to the sedating properties of these medications in humans. Moreover, as the deficit in cortical 5HT(2A)R in Egr3(-/-) mice aligns with numerous studies reporting decreased 5HT(2A)R levels in the brains of schizophrenia patients, and the gene encoding the 5HT(2A)R is itself a leading schizophrenia candidate gene, these findings suggest a potential mechanism by which putative dysfunction in EGR3 in humans may influence risk for schizophrenia.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce/deficiência , Proteína 3 de Resposta de Crescimento Precoce/genética , Hipnóticos e Sedativos/metabolismo , Atividade Motora/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Clozapina/farmacologia , Modelos Animais de Doenças , Humanos , Ketanserina , Masculino , Camundongos , Camundongos Transgênicos , Piperidinas , Esquizofrenia/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA