Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 43(4): 567-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26795346

RESUMO

Microbial-induced calcium carbonate precipitation has been identified as a novel method to improve durability and remediate cracks in concrete. One way to introduce microorganisms to concrete is by replacing the mixing water with a bacterial culture in nutrient medium. In the literature, yeast extract often has been used as a carbon source for this application; however, severe retardation of hydration kinetics has been observed when yeast extract is added to cement. This study investigates the suitability of alternative carbon sources to replace yeast extract for microbial-induced calcium carbonate precipitation in cement-based materials. A combination of meat extract and sodium acetate was identified as a suitable replacement in growth medium for Sporosarcina pasteurii; this alternative growth medium reduced retardation by 75 % (as compared to yeast extract) without compromising bacterial growth, urea hydrolysis, cell zeta potential, and ability to promote calcium carbonate formation.


Assuntos
Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Materiais de Construção/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Dessecação , Sporosarcina/crescimento & desenvolvimento , Sporosarcina/metabolismo , Materiais de Construção/análise , Meios de Cultura/farmacologia , Hidrólise , Cinética , Sporosarcina/efeitos dos fármacos , Ureia/metabolismo
2.
PLoS Comput Biol ; 9(12): e1003395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367248

RESUMO

The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4](2+) IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings - both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/química , Anti-Infecciosos/química , Domínio Catalítico , Desenho de Fármacos , Ligantes , Modelos Teóricos , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Conformação Proteica
3.
Mol Ther ; 20(9): 1676-88, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22735379

RESUMO

Adaptive immune responses may be vital in the overall efficacy of oncolytic viruses in human malignancies. However, immune responses to oncolytic adenoviruses are poorly understood because these viruses lack activity in murine cells, which precludes evaluation in immunocompetent murine cancer models. We have evaluated human adenovirus activity in murine cells. We show that a panel of murine carcinoma cells, including CMT64, MOVCAR7, and MOSEC/ID8, can readily be infected with human adenovirus. These cells also support viral gene transcription, messenger RNA (mRNA) processing, and genome replication. However, there is a profound failure of adenovirus protein synthesis, especially late structural proteins, both in vitro and in vivo, with reduced loading of late mRNA onto ribosomes. Our data also show that in trans expression of the nonstructural late protein L4-100K increases both the amount of viral mRNA on ribosomes and the synthesis of late proteins, accompanied by reduced phosphorylation of eIF2α and improved anticancer efficacy. These results suggest that murine models that support human adenovirus replication could be generated, thus allowing evaluation of human adenoviruses in immunocompetent mice.


Assuntos
Adenovírus Humanos/genética , Vírus Oncolíticos/genética , Neoplasias Ovarianas/terapia , Biossíntese de Proteínas , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Imunidade Adaptativa , Adenovírus Humanos/imunologia , Animais , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , Vírus Oncolíticos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/imunologia , Ovário/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Ribossomos/genética , Ribossomos/metabolismo , Especificidade da Espécie , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
4.
Mol Ther ; 19(3): 490-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21081903

RESUMO

Oncolytic adenoviruses show promise as a cancer treatment. However, they generate acute inflammatory responses with production of cytokines, including tumor necrosis factor-α (TNF-α). We investigated whether inhibition of TNF-α augments efficacy of the E1A CR2-deleted adenovirus dl922-947 in ovarian cancer. dl922-947 induced transcription of TNF-α and its downstream signaling targets interleukin-6 and -8 (IL-6 and IL-8) in ovarian cancer cells. In vitro, RNAi-mediated knockdown of TNF-α reduced production of multiple inflammatory cytokines after infection and increased ovarian cancer cell sensitivity to virus cytotoxicity, as did treatment with the anti-TNF-α antibody infliximab. In vivo, stable knockdown of TNF-α in IGROV-1 xenografts increased the anticancer activity of dl922-947. In addition, inhibition of TNF-α using monoclonal antibodies also improved dl922-947 efficacy. This increased efficacy resulted from suppression of cellular inhibitor of apoptosis-1 and -2 (cIAP1 and cIAP2) transcription in malignant cells and a consequent increase in caspase-mediated apoptosis. These findings suggest that TNF-α acts as a survival factor in adenovirus-infected cells. Combining TNF-α inhibition with oncolytic adenoviruses could improve antitumor activity in clinical trials.


Assuntos
Adenoviridae , Proteínas Inibidoras de Apoptose/metabolismo , Vírus Oncolíticos , Neoplasias Ovarianas , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Adenoviridae/efeitos dos fármacos , Adenoviridae/imunologia , Adenoviridae/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Infliximab , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia Viral Oncolítica , Vírus Oncolíticos/efeitos dos fármacos , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sobrevida , Fator de Necrose Tumoral alfa/farmacologia , Replicação Viral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proteins ; 79(12): 3381-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22072520

RESUMO

A constant pH molecular dynamics method has been used in the blind prediction of pK(a) values of titratable residues in wild type and mutated structures of the Staphylococcal nuclease (SNase) protein. The predicted values have been subsequently compared to experimental values provided by the laboratory of García-Moreno. CpHMD performs well in predicting the pK(a) of solvent-exposed residues. For residues in the protein interior, the CpHMD method encounters some difficulties in reaching convergence and predicting the pK(a) values for residues having strong interactions with neighboring residues. These results show the need to accurately and sufficiently sample conformational space in order to obtain pK(a) values consistent with experimental results.


Assuntos
Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Estrutura Terciária de Proteína , Simulação por Computador , Concentração de Íons de Hidrogênio , Nuclease do Micrococo/genética , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Prótons , Eletricidade Estática
6.
Nat Microbiol ; 5(10): 1207-1216, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32661312

RESUMO

The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.


Assuntos
Cinetocoros/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunofenotipagem , Cinetocoros/química , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/química , Relação Estrutura-Atividade
7.
J Med Chem ; 62(4): 1793-1802, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30688459

RESUMO

Protein tyrosine phosphatase SHP2 is an oncoprotein associated with cancer as well as a potential immune modulator because of its role in the programmed cell death PD-L1/PD-1 pathway. In the preceding manuscript, we described the optimization of a fused, bicyclic screening hit for potency, selectivity, and physicochemical properties in order to further expand the chemical diversity of allosteric SHP2 inhibitors. In this manuscript, we describe the further expansion of our approach, morphing the fused, bicyclic system into a novel monocyclic pyrimidinone scaffold through our understanding of SAR and use of structure-based design. These studies led to the identification of SHP394 (1), an orally efficacious inhibitor of SHP2, with high lipophilic efficiency, improved potency, and enhanced pharmacokinetic properties. We also report other pyrimidinone analogues with favorable pharmacokinetic and potency profiles. Overall, this work improves upon our previously described allosteric inhibitors and exemplifies and extends the range of permissible chemical templates that inhibit SHP2 via the allosteric mechanism.


Assuntos
Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirimidinonas/uso terapêutico , Administração Oral , Regulação Alostérica , Sítio Alostérico , Aminopiridinas/síntese química , Aminopiridinas/farmacocinética , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Chem ; 62(4): 1781-1792, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30688462

RESUMO

SHP2 is a nonreceptor protein tyrosine phosphatase within the mitogen-activated protein kinase (MAPK) pathway controlling cell growth, differentiation, and oncogenic transformation. SHP2 also participates in the programed cell death pathway (PD-1/PD-L1) governing immune surveillance. Small-molecule inhibition of SHP2 has been widely investigated, including in our previous reports describing SHP099 (2), which binds to a tunnel-like allosteric binding site. To broaden our approach to allosteric inhibition of SHP2, we conducted additional hit finding, evaluation, and structure-based scaffold morphing. These studies, reported here in the first of two papers, led to the identification of multiple 5,6-fused bicyclic scaffolds that bind to the same allosteric tunnel as 2. We demonstrate the structural diversity permitted by the tunnel pharmacophore and culminated in the identification of pyrazolopyrimidinones (e.g., SHP389, 1) that modulate MAPK signaling in vivo. These studies also served as the basis for further scaffold morphing and optimization, detailed in the following manuscript.


Assuntos
Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Regulação Alostérica , Sítio Alostérico , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade
9.
Nucleic Acids Res ; 34(2): 426-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16418503

RESUMO

Prior to conjugative transfer of plasmids, one plasmid strand is cleaved in a site- and strand-specific manner by an enzyme called a relaxase or nickase. In F and related plasmids, an inverted repeat is located near the plasmid strand cleavage site, and others have proposed that the ability of this sequence to form a hairpin when in single-stranded form is important for transfer. Substitutions were introduced into a cloned F oriT region and their effects on plasmid transfer were assessed. For those substitutions that substantially reduced transfer, the results generally correlated with effects on in vitro binding of oligonucleotides to the F TraI relaxase domain rather than with predicted effects on hairpin formation. One substitution shown previously to dramatically reduce both plasmid transfer and in vitro binding to a 17-base oligonucleotide had little apparent effect on binding to a 30-base oligonucleotide that contained the hairpin region. Results from subsequent experiments strongly suggest that the relaxase domain can bind to hairpin oligonucleotides in two distinct manners with different sequence specificities, and that the protein binds the oligonucleotides at the same or overlapping sites.


Assuntos
Conjugação Genética , DNA Nucleotidiltransferases/metabolismo , Fator F/química , Fator F/metabolismo , DNA Nucleotidiltransferases/química , Mutagênese , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Estrutura Terciária de Proteína , Sequências Repetitivas de Ácido Nucleico , Especificidade por Substrato
10.
Nucleic Acids Res ; 34(3): 1028-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16481311

RESUMO

Local DNA deformation arises from an interplay among sequence-related base stacking, intrastrand phosphate repulsion, and counterion and water distribution, which is further complicated by the approach and binding of a protein. The role of electrostatics in this complex chemistry was investigated using tethered cationic groups that mimic proximate side chains. A DNA duplex was modified with one or two centrally located deoxyuracils substituted at the 5-position with either a flexible 3-aminopropyl group or a rigid 3-aminopropyn-1-yl group. End-to-end helical distances and duplex flexibility were obtained from measurements of the time-resolved Förster resonance energy transfer between 5'- and 3'-linked dye pairs. A novel analysis utilized the first and second moments of the G(t) function, which encompasses only the energy transfer process. Duplex flexibility is altered by the presence of even a single positive charge. In contrast, the mean 5'-3' distance is significantly altered by the introduction of two adjacently tethered cations into the double helix but not by a single cation: two adjacent aminopropyl groups decrease the 5'-3' distance while neighboring aminopropynyl groups lengthen the helix.


Assuntos
DNA/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico , Anisotropia , Sequência de Bases , Cátions/química , Cátions/metabolismo , DNA/genética , Fluorescência , Maleabilidade , Uracila/análogos & derivados , Uracila/química
11.
ACS Chem Biol ; 13(3): 647-656, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29304282

RESUMO

SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.


Assuntos
Regulação Alostérica , Sítio Alostérico , Piperidinas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirimidinas/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Conformação Proteica , Estabilidade Proteica
12.
Nutr Rev ; 64(3): 93-108, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16572597

RESUMO

This review discusses studies investigating the effects of antioxidant supplementation on exercise-induced oxidative stress with a focus on the health implications. The aim is to determine antioxidant requirements for endurance athletes. Overall, differences in methodology make it difficult to compare the relatively small number of published studies on this topic. The types of studies needed to more adequately assess the health effects of antioxidant supplements in athletes (long-term interventions with hard end points) have not been done. Therefore, there is currently insufficient evidence to recommend antioxidant supplements for endurance athletes.


Assuntos
Antioxidantes/administração & dosagem , Necessidades Nutricionais , Resistência Física/fisiologia , Suplementos Nutricionais , Nível de Saúde , Humanos , Política Nutricional , Estresse Oxidativo/efeitos dos fármacos , Resistência Física/efeitos dos fármacos
13.
Cancer Res ; 62(22): 6587-97, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12438254

RESUMO

The retinoblastoma tumor suppressor, RB, is thought to inhibit cell cycle progression through transcriptional repression. E2F-regulated genes have been viewed as presumptive targets of RB-mediated repression. However, we found that specific E2F targets were not regulated in a consistent manner by the action of a RB allele that is refractory to cyclin-dependent kinase/cyclin-mediated phosphorylation (PSM-RB) when compared with E2F2 overproduction. Therefore, we used Affymetrix GeneChips as an unbiased approach to identify RB targets. We found that expression of PSM-RB significantly attenuates >200 targets, the majority of which are involved in cell cycle control (DNA replication or G2-M), DNA repair, or transcription/chromatin structure. The observed repression was due to the action of RB and not merely a manifestation of altered cell cycle distribution. Additionally, the majority of RB repression targets were confirmed through the blockade of endogenous RB phosphorylation via p16ink4a overexpression. Thus, these results have utility in assigning RB pathway activation in more complex systems of cell cycle inhibition (e.g., mitogen withdrawal, senescence, or DNA damage checkpoint). As expected, a significant fraction of RB-repressed genes have promoters that are bound/regulated by E2F family members. However, targets were identified that are distinct from genes known to be stimulated by overexpression of specific E2F proteins. Moreover, the relative action of RB versus E2F2 overexpression on specific genes demonstrates that a simple opposition model does not explain the relative contribution of RB to gene regulation. Thus, this study provides the first unbiased description of RB-repressed genes, thereby delineating new aspects of RB-mediated transcriptional control and novel targets involved in diverse cellular processes.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/fisiologia , Animais , Ciclo Celular/genética , Fatores de Transcrição E2F , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Proteína do Retinoblastoma/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
14.
J Med Chem ; 59(17): 7773-82, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27347692

RESUMO

SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.


Assuntos
Antineoplásicos/química , Piperidinas/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirazinas/química , Pirimidinas/química , Administração Oral , Regulação Alostérica , Sítio Alostérico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Feminino , Xenoenxertos , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Modelos Moleculares , Transplante de Neoplasias , Piperidinas/síntese química , Piperidinas/farmacocinética , Piperidinas/farmacologia , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Pirazinas/síntese química , Pirazinas/farmacocinética , Pirazinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Relação Estrutura-Atividade
15.
Biochim Biophys Acta ; 1646(1-2): 86-99, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12637015

RESUMO

TraI from conjugative plasmid F factor is both a "relaxase" that sequence-specifically binds and cleaves single-stranded DNA (ssDNA) and a helicase that unwinds the plasmid during transfer. Using limited proteolysis of a TraI fragment, we generated a 36-kDa fragment (TraI36) retaining TraI ssDNA binding specificity and relaxase activity but lacking the ssDNA-dependent ATPase activity of the helicase. Further proteolytic digestion of TraI36 generates stable N-terminal 26-kDa (TraI26) and C-terminal 7-kDa fragments. Both TraI36 and TraI26 are stably folded and unfold in a highly cooperative manner, but TraI26 lacks affinity for ssDNA. Mutational analysis of TraI36 indicates that N-terminal residues Tyr(16) and Tyr(17) are required for efficient ssDNA cleavage but not for high-affinity ssDNA binding. Although the TraI36 N-terminus provides the relaxase catalytic residues, both N- and C-terminal structural domains participate in binding, suggesting that both domains combine to form the TraI relaxase active site.


Assuntos
Proteínas de Bactérias , DNA Helicases/química , Fator F/química , Sítios de Ligação , Dicroísmo Circular , DNA Helicases/biossíntese , DNA Helicases/metabolismo , DNA de Cadeia Simples/química , Endodesoxirribonucleases/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Vetores Genéticos , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Desnaturação Proteica , Tripsina , Ultracentrifugação
16.
J Pharm Sci ; 104(12): 3997-4001, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524700

RESUMO

Drugs possessing the ability to bind to melanin-rich tissue, such as the eye, are linked with higher ocular exposure, and therefore have the potential to affect the efficacy and safety profiles of therapeutics. A high-throughput melanin chromatographic affinity assay has been developed and validated, which has allowed the rapid melanin affinity assessment for a large number of compounds. Melanin affinity of compounds can be quickly assigned as low, medium, or high melanin binders. A high-throughput chromatographic method has been developed and fully validated to assess melanin affinity of pharmaceuticals and has been useful in predicting ocular tissue distribution in vivo studies. The high-throughput experimental approach has also allowed for a specific training set of 263 molecules for a quantitative structure-affinity relationships (QSAR) method to be developed, which has also been shown to be a predictor of ocular tissue exposure. Previous studies have reported the development of in silico QSAR models based on training sets of relatively small and mostly similar compounds; this model covers a broader range of melanin-binding affinities than what has been previously published and identified several physiochemical descriptors to be considered in the design of compounds where melanin-binding modulation is desired.


Assuntos
Olho/metabolismo , Melaninas/metabolismo , Preparações Farmacêuticas/metabolismo , Simulação por Computador , Relação Quantitativa Estrutura-Atividade
19.
Arthritis Care Res (Hoboken) ; 64(1): 71-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21671413

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) patients were reassessed for body composition and physical function mean ± SD 39 ± 6 months after commencing a randomized controlled trial involving 24 weeks of either high-intensity progressive resistance training (PRT) or low-intensity range of movement exercise (control) to determine whether the benefits of PRT (i.e., reduced fat mass [FM], increased lean mass [LM], and improved function) were retained. METHODS: Nine PRT and 9 control subjects were reassessed for body composition (dual x-ray absorptiometry) and function (knee extensor strength, chair test, arm curl test, 50-foot walk) approximately 3 years after resuming normal activity following the exercise intervention. RESULTS: At followup, PRT subjects remained significantly leaner than control subjects (P = 0.03), who conversely had accumulated considerable FM during the study period (approximately -1.0 kg versus +2.4 kg, PRT versus controls). PRT subjects also retained most of the improvement in walking speed gained from training (P = 0.03 versus controls at followup). In contrast, the PRT-induced gains in LM and strength-related function were completely lost. Data from the controls suggest that established and stable RA patients have similar rates of LM loss but elevated rates of FM accretion relative to age-matched sedentary non-RA controls. CONCLUSION: We found that long-term resumption of normal activity resulted in loss of PRT-induced improvements in LM and strength-related function, but substantial retention of the benefits in FM reduction and walking ability. The relatively long-term benefit of reduced adiposity, in particular, is likely to be clinically significant, as obesity is very prevalent among RA patients and is associated with their disability and exacerbated cardiovascular disease risk.


Assuntos
Artrite Reumatoide/terapia , Músculo Esquelético/fisiopatologia , Treinamento Resistido , Absorciometria de Fóton , Adiposidade , Idoso , Análise de Variância , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/fisiopatologia , Avaliação da Deficiência , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular , Valor Preditivo dos Testes , Recuperação de Função Fisiológica , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento , País de Gales , Caminhada
20.
Chem Biol Drug Des ; 77(2): 117-23, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21266015

RESUMO

In most eubacteria, apicomplexans, and most plants, including the causal agents for diseases such as malaria, leprosy, and tuberculosis, the methylerythritol phosphate pathway is the route for the biosynthesis of the C(5) precursors to the essential isoprenoid class of compounds. Owing to their absence in humans, the enzymes of the methylerythritol phosphate pathway have become attractive targets for drug discovery. This work investigates a new class of inhibitors against the second enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Inhibition of this enzyme may involve the chelation of a crucial active site Mn ion, and the metal-chelating moieties studied here have previously been shown to be successful in application to the zinc-dependent metalloproteinases. Quantum mechanics and docking calculations presented in this work suggest the transferability of these metal-chelating compounds to Mn-containing 1-deoxy-D-xylulose 5-phosphate reductoisomerase enzyme, as a promising starting point to the development of potent inhibitors.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Antituberculosos/química , Inibidores Enzimáticos/química , Manganês/química , Complexos Multienzimáticos/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Zinco/química , Aldose-Cetose Isomerases/metabolismo , Antituberculosos/uso terapêutico , Sítios de Ligação , Domínio Catalítico , Quelantes/química , Simulação por Computador , Desenho de Fármacos , Inibidores Enzimáticos/uso terapêutico , Humanos , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA