Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioinformatics ; 34(14): 2392-2400, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29490015

RESUMO

Motivation: RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study, we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. Results: We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16 562 isoform-pairs from 4929 genes. Among those, 26% of the discovered patterns were significant (P<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. Finally, the effects of drop-out events and expression levels of isoforms on ISOP's performances were investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoform-level preference, commitment and heterogeneity in single-cell RNA-sequencing data. Availability and implementation: The ISOP method has been implemented as a R package and is available at https://github.com/nghiavtr/ISOP under a GPL-3 license. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica/métodos , Expressão Gênica , Isoformas de RNA/genética , Análise de Sequência de RNA/métodos , Software , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos
2.
Bioinformatics ; 33(8): 1179-1186, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28088763

RESUMO

Motivation: Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalization. Results: We have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalization and visualization of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development. Availability and Implementation: The open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater . Contact: davis@ebi.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Análise de Célula Única/métodos , Software , Linhagem Celular , Humanos , Análise de Componente Principal , Controle de Qualidade , RNA/genética , Estatística como Assunto
3.
BMC Genomics ; 18(1): 53, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-28061811

RESUMO

BACKGROUND: Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. RESULTS: We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. CONCLUSION: As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.


Assuntos
Interação Gene-Ambiente , Macrófagos/citologia , Análise de Sequência de RNA , Análise de Célula Única , Técnicas de Inativação de Genes , Humanos , Macrófagos/metabolismo , Fenótipo , Proteína 1 com Domínio SAM e Domínio HD/deficiência , Proteína 1 com Domínio SAM e Domínio HD/genética
4.
Hum Mol Genet ; 24(R1): R74-84, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26113645

RESUMO

Recent advances in single-cell genomics are opening up unprecedented opportunities to transform cancer genomics. While bulk tissue genomic analysis across large populations of tumour cells has provided key insights into cancer biology, this approach does not provide the resolution that is critical for understanding the interaction between different genetic events within the cellular hierarchy of the tumour during disease initiation, evolution, relapse and metastasis. Single-cell genomic approaches are uniquely placed to definitively unravel complex clonal structures and tissue hierarchies, account for spatiotemporal cell interactions and discover rare cells that drive metastatic disease, drug resistance and disease progression. Here we present five challenges that need to be met for single-cell genomics to fulfil its potential as a routine tool alongside bulk sequencing. These might be thought of as being challenges related to samples (processing and scale for analysis), sensitivity and specificity of mutation detection, sources of heterogeneity (biological and technical), synergies (from data integration) and systems modelling. We discuss these in the context of recent advances in technologies and data modelling, concluding with implications for moving cancer research into the clinic.


Assuntos
Genômica , Neoplasias/genética , Análise de Célula Única/métodos , Animais , Humanos , Neoplasias/patologia , Neoplasias/terapia , Sensibilidade e Especificidade
5.
Bioinformatics ; 32(14): 2128-35, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153638

RESUMO

MOTIVATION: Single-cell RNA-sequencing technology allows detection of gene expression at the single-cell level. One typical feature of the data is a bimodality in the cellular distribution even for highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequencing are not able to capture this property. RESULTS: We introduce a beta-Poisson mixture model that can capture the bimodality of the single-cell gene expression distribution. We further integrate the model into the generalized linear model framework in order to perform differential expression analyses. The whole analytical procedure is called BPSC. The results from several real single-cell RNA-seq datasets indicate that ∼90% of the transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better than the fit of the standard gamma-Poisson model in > 80% of the transcripts. Moreover, in differential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST, two recent methods specifically designed for single-cell RNA-seq data. AVAILABILITY AND IMPLEMENTATION: An R package BPSC for model fitting and differential expression analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/nghiavtr/BPSC CONTACT: yudi.pawitan@ki.se or mattias.rantalainen@ki.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência de RNA , Análise de Célula Única , Biologia Computacional/métodos , Modelos Teóricos , RNA
6.
Diabetologia ; 58(6): 1239-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25773404

RESUMO

AIMS/HYPOTHESIS: Beta cell death is a hallmark of diabetes. It is not known whether specific cellular stresses associated with type 1 or type 2 diabetes require specific factors to protect pancreatic beta cells. No systematic comparison of endogenous soluble factors in the context of multiple pro-apoptotic conditions has been published. METHODS: Primary mouse islet cells were cultured in conditions mimicking five type 1 or type 2 diabetes-related stresses: basal 5 mmol/l glucose, cytokine cocktail (25 ng/ml TNF-α, 10 ng/ml IL-1ß, 10 ng/ml IFN-γ), 1 µmol/l thapsigargin, 1.5 mmol/l palmitate and 20 mmol/l glucose (all in the absence of serum). We surveyed the effects of a library of 206 endogenous factors (selected based on islet expression of their receptors) on islet cell survival through multi-parameter, live-cell imaging. RESULTS: Our survey pointed to survival factors exhibiting generalised protective effects across conditions meant to model different types of diabetes and stages of the diseases. For example, our survey and follow-up experiments suggested that OLFM1 is a novel protective factor for mouse and human beta cells across multiple conditions. Most strikingly, we also found specific protective survival factors for each model stress condition. For example, semaphorin4A (SEMA4A) was toxic to islet cells in the serum-free baseline and serum-free 20 mmol/l glucose conditions, but protective in the context of lipotoxicity. Rank product testing supported the consistency of our observations. CONCLUSIONS/INTERPRETATION: Collectively, our survey reveals previously unidentified islet cell survival factors and suggest their potential utility in individualised medicine.


Assuntos
Apoptose , Diabetes Mellitus Experimental/fisiopatologia , Células Secretoras de Insulina/citologia , Animais , Células Cultivadas , Biologia Computacional , Glucose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Insulina/metabolismo , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Pessoa de Meia-Idade , Palmitatos/metabolismo , Transdução de Sinais , Tapsigargina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
PLoS Genet ; 8(2): e1002505, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22383892

RESUMO

Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively. Of 8,992 probesets expressed in ABD or GLU, 685 (7.6%) were expressed in ABD and 51 (0.6%) in GLU only. Differential eigengene network analysis of 8,256 shared probesets detected 22 shared modules with high preservation across adipose depots (D(ABD-GLU) = 0.89), seven of which were associated with MetS (FDR P<0.01). The strongest associated module, significantly enriched for immune response-related processes, contained 94/620 (15%) genes with inter-depot differences. In an independent cohort of 145/141 twins with ABD and WB longitudinal expression data, median variability in ABD due to familiality was greater for MetS-associated versus un-associated modules (ABD: 0.48 versus 0.18, P = 0.08; GLU: 0.54 versus 0.20, P = 7.8×10(-4)). Cis-eQTL analysis of probesets associated with MetS (FDR P<0.01) and/or inter-depot differences (FDR P<0.01) provided evidence for 32 eQTLs. Corresponding eSNPs were tested for association with MetS-related phenotypes in two GWAS of >100,000 individuals; rs10282458, affecting expression of RARRES2 (encoding chemerin), was associated with body mass index (BMI) (P = 6.0×10(-4)); and rs2395185, affecting inter-depot differences of HLA-DRB1 expression, was associated with high-density lipoprotein (P = 8.7×10(-4)) and BMI-adjusted waist-to-hip ratio (P = 2.4×10(-4)). Since many genes and their interactions influence complex traits such as MetS, integrated analysis of genotypes and coexpression networks across multiple tissues relevant to clinical traits is an efficient strategy to identify novel associations.


Assuntos
Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Síndrome Metabólica/genética , Índice de Massa Corporal , Quimiocinas/genética , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Síndrome Metabólica/patologia , Especificidade de Órgãos , Fenótipo , Locos de Características Quantitativas
8.
Methods ; 59(1): 71-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23079396

RESUMO

The stochastic nature of generating eukaryotic transcripts challenges conventional methods for obtaining and analyzing single-cell gene expression data. In order to address the inherent noise, detailed methods are described on how to collect data on multiple genes in a large number of single cells using microfluidic arrays. As part of a study exploring the effect of genotype on Wnt pathway activation, data were collected for 96 qPCR assays on 1440 lymphoblastoid cells. The description of methods includes preliminary data processing steps. The methods used in the collection and analysis of single-cell qPCR data are contrasted with those used in conventional qPCR.


Assuntos
Perfilação da Expressão Gênica/métodos , Células Progenitoras Linfoides/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Célula Única , Linhagem Celular , Interpretação Estatística de Dados , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Via de Sinalização Wnt
9.
Oncotarget ; 8(16): 27199-27215, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423712

RESUMO

We demonstrate that model-based unsupervised learning can uniquely discriminate single-cell subpopulations by their gene expression distributions, which in turn allow us to identify specific genes for focused functional studies. This method was applied to MDA-MB-231 breast cancer cells treated with the antidiabetic drug metformin, which is being repurposed for treatment of triple-negative breast cancer. Unsupervised learning identified a cluster of metformin-treated cells characterized by a significant suppression of 230 genes (p-value < 2E-16). This analysis corroborates known studies of metformin action: a) pathway analysis indicated known mechanisms related to metformin action, including the citric acid (TCA) cycle, oxidative phosphorylation, and mitochondrial dysfunction (p-value < 1E-9); b) 70% of these 230 genes were functionally implicated in metformin response; c) among remaining lesser functionally-studied genes for metformin-response was CDC42, down-regulated in breast cancer treated with metformin. However, CDC42's mechanisms in metformin response remained unclear. Our functional studies showed that CDC42 was involved in metformin-induced inhibition of cell proliferation and cell migration mediated through an AMPK-independent mechanism. Our results points to 230 genes that might serve as metformin response signatures, which needs to be tested in patients treated with metformin and, further investigation of CDC42 and AMPK-independence's role in metformin's anticancer mechanisms.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Metformina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Aprendizado de Máquina não Supervisionado , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Proteína cdc42 de Ligação ao GTP/genética
10.
Islets ; 8(2): 48-56, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909740

RESUMO

Worldwide efforts are underway to replace or repair lost or dysfunctional pancreatic ß-cells to cure diabetes. However, it is unclear what the final product of these efforts should be, as ß-cells are thought to be heterogeneous. To enable the analysis of ß-cell heterogeneity in an unbiased and quantitative way, we developed model-free and model-based statistical clustering approaches, and created new software called TraceCluster. Using an example data set, we illustrate the utility of these approaches by clustering dynamic intracellular Ca(2+) responses to high glucose in ∼300 simultaneously imaged single islet cells. Using feature extraction from the Ca(2+) traces on this reference data set, we identified 2 distinct populations of cells with ß-like responses to glucose. To the best of our knowledge, this report represents the first unbiased cluster-based analysis of human ß-cell functional heterogeneity of simultaneous recordings. We hope that the approaches and tools described here will be helpful for those studying heterogeneity in primary islet cells, as well as excitable cells derived from embryonic stem cells or induced pluripotent cells.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Software
11.
Nat Biotechnol ; 31(8): 748-52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23873083

RESUMO

Gene expression in multiple individual cells from a tissue or culture sample varies according to cell-cycle, genetic, epigenetic and stochastic differences between the cells. However, single-cell differences have been largely neglected in the analysis of the functional consequences of genetic variation. Here we measure the expression of 92 genes affected by Wnt signaling in 1,440 single cells from 15 individuals to associate single-nucleotide polymorphisms (SNPs) with gene-expression phenotypes, while accounting for stochastic and cell-cycle differences between cells. We provide evidence that many heritable variations in gene function--such as burst size, burst frequency, cell cycle-specific expression and expression correlation/noise between cells--are masked when expression is averaged over many cells. Our results demonstrate how single-cell analyses provide insights into the mechanistic and network effects of genetic variability, with improved statistical power to model these effects on gene expression.


Assuntos
Expressão Gênica , Estudos de Associação Genética , Locos de Características Quantitativas/genética , Via de Sinalização Wnt/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Análise de Célula Única
12.
PLoS One ; 6(11): e27338, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22102887

RESUMO

To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets.


Assuntos
Gordura Abdominal/fisiologia , Biomarcadores/metabolismo , Nádegas/fisiologia , MicroRNAs/genética , Locos de Características Quantitativas , RNA Mensageiro/genética , Adulto , Estudos de Casos e Controles , Feminino , Seguimentos , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Síndrome Metabólica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética
14.
BMC Med Genomics ; 2: 54, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19689793

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are non-coding RNA molecules involved in post-transcriptional control of gene expression of a wide number of genes, including those involved in glucose homeostasis. Type 2 diabetes (T2D) is characterized by hyperglycaemia and defects in insulin secretion and action at target tissues. We sought to establish differences in global miRNA expression in two insulin-target tissues from inbred rats of spontaneously diabetic and normoglycaemic strains. METHODS: We used a miRNA microarray platform to measure global miRNA expression in two insulin-target tissues: liver and adipose tissue from inbred rats of spontaneously diabetic (Goto-Kakizaki [GK]) and normoglycaemic (Brown-Norway [BN]) strains which are extensively used in genetic studies of T2D. MiRNA data were integrated with gene expression data from the same rats to investigate how differentially expressed miRNAs affect the expression of predicted target gene transcripts. RESULTS: The expression of 170 miRNAs was measured in liver and adipose tissue of GK and BN rats. Based on a p-value for differential expression between GK and BN, the most significant change in expression was observed for miR-125a in liver (FC = 5.61, P = 0.001, Padjusted = 0.10); this overexpression was validated using quantitative RT-PCR (FC = 13.15, P = 0.0005). MiR-125a also showed over-expression in the GK vs. BN analysis within adipose tissue (FC = 1.97, P = 0.078, Padjusted = 0.99), as did the previously reported miR-29a (FC = 1.51, P = 0.05, Padjusted = 0.99). In-silico tools assessing the biological role of predicted miR-125a target genes suggest an over-representation of genes involved in the MAPK signaling pathway. Gene expression analysis identified 1308 genes with significantly different expression between GK and BN rats (Padjusted < 0.05): 233 in liver and 1075 in adipose tissue. Pathways related to glucose and lipid metabolism were significantly over-represented among these genes. Enrichment analysis suggested that differentially expressed genes in GK compared to BN included more predicted miR-125a target genes than would be expected by chance in adipose tissue (FDR = 0.006 for up-regulated genes; FDR = 0.036 for down-regulated genes) but not in liver (FDR = 0.074 for up-regulated genes; FDR = 0.248 for down-regulated genes). CONCLUSION: MiR-125a is over-expressed in liver in hyperglycaemic GK rats relative to normoglycaemic BN rats, and our array data also suggest miR-125a is over-expressed in adipose tissue. We demonstrate the use of in-silico tools to provide the basis for further investigation of the potential role of miR-125a in T2D. In particular, the enrichment of predicted miR-125a target genes among differentially expressed genes has identified likely target genes and indicates that integrating global miRNA and mRNA expression data may give further insights into miRNA-mediated regulation of gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA