RESUMO
Salmonella was isolated from 23/79 (29.1%) pooled gecko stool samples from households in southern Malawi. Whole genome sequencing of 47 individual isolates within this collection revealed 27 Salmonella serovars spanning two subspecies. Our results demonstrate that geckos play an important role in the carriage of Salmonella within households.
RESUMO
Background: The Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) has undertaken sentinel surveillance of bloodstream infection and meningitis at Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi for 20 years. Previously, three epidemics of Salmonella bloodstream infection have been identified. Here we provide updated surveillance data on invasive non-typhoidal Salmonella disease from 2011 - 2019. Methods: Surveillance data describing trends in invasive non-typhoidal Salmonella disease and associated antimicrobial susceptibility profiles are presented for the period January 2011 - December 2019. Results: Between January 2011-December 2019, 128,588 blood cultures and 40,769 cerebrospinal fluid cultures were processed at MLW. Overall, 1.00% of these were positive for S. Typhimurium, 0.10% for S. Enteritidis, and 0.05% positive for other Salmonella species. Estimated minimum incidence of invasive non-typhoidal Salmonella (iNTS) disease decreased from 21/100,000 per year in 2011 to 7/100,000 per year in 2019. Over this period, 26 confirmed cases of Salmonella meningitis were recorded (88.5% S. Typhimurium). Between 2011-2019 there was a substantial decrease in proportion of S. Typhimurium (78.5% to 27.7%) and S. Enteritidis (31.8% in 2011 to 0%) that were multidrug-resistant. Resistance to fluoroquinolones and third-generation generation cephalosporins (3GC) remained uncommon, however 3GC increased amongst Salmonella spp. and S. Typhimurium in the latter part of the period. Conclusions: The total number of iNTS bloodstream infections decreased between 2011-2019. Although the number multidrug resistance (MDR) S. Typhimurium and S. Enteritidis isolates has fallen, the number of MDR isolates of other Salmonella spp. has increased, including 3GC isolates.
RESUMO
In sub-Saharan Africa (sSA), there is high morbidity and mortality from severe bacterial infection and this is compounded by antimicrobial resistance, in particular, resistance to 3rd-generation cephalosporins. This resistance is typically mediated by extended-spectrum beta lactamases (ESBLs). To interrupt ESBL transmission it will be important to investigate how human behaviour, water, sanitation, and hygiene (WASH) practices, environmental contamination, and antibiotic usage in both urban and rural settings interact to contribute to transmission of ESBL E. coli and ESBL K. pneumoniae between humans, animals, and the environment. Here we present the protocol for the Drivers of Resistance in Uganda and Malawi (DRUM) Consortium, in which we will collect demographic, geospatial, clinical, animal husbandry and WASH data from a total of 400 households in Uganda and Malawi. Longitudinal human, animal and environmental sampling at each household will be used to isolate ESBL E. coli and ESBL K. pneumoniae. This will be complimented by a Risks, Attitudes, Norms, Abilities and Self-Regulation (RANAS) survey and structured observations to understand the contextual and psychosocial drivers of regional WASH practices. Bacterial isolates and plate sweeps will be further characterised using a mixture of short-,long-read and metagenomic whole-genome sequencing. These datasets will be integrated into agent-based models to describe the transmission of EBSL resistance in Uganda and Malawi and allow us to inform the design of interventions for interrupting transmission of ESBL-bacteria.
RESUMO
Salmonella is a major cause of foodborne disease globally. Pigs can carry and shed non-typhoidal Salmonella (NTS) asymptomatically, representing a significant reservoir for these pathogens. To investigate Salmonella carriage by African domestic pigs, faecal and mesenteric lymph node samples were taken at slaughter in Nairobi, Busia (Kenya) and Chikwawa (Malawi) between October 2016 and May 2017. Selective culture, antisera testing and whole genome sequencing were performed on samples from 647 pigs; the prevalence of NTS carriage was 12.7% in Busia, 9.1% in Nairobi and 24.6% in Chikwawa. Two isolates of S. Typhimurium ST313 were isolated, but were more closely related to ST313 isolates associated with gastroenteritis in the UK than bloodstream infection in Africa. The discovery of porcine NTS carriage in Kenya and Malawi reveals potential for zoonotic transmission of diarrhoeal strains to humans in these countries, but not for transmission of clades specifically associated with invasive NTS disease in Africa.