Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1145072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033985

RESUMO

Lawsonia intracellularis is the etiologic agent of porcine proliferative enteropathy (PPE), an inflammatory bowel disease with a major economic impact on the pig industry. The serological diagnosis of PPE can be performed using Blocking or Indirect ELISA, Immunoperoxidase Monolayer Assay (IPMA) and Indirect Fluorescence Antibody Test (IFAT). Here, we designed a most sophisticated immunological method for the detection of porcine anti-L. intracellularis IgGs, named Flow Cytometry Antibody Test - FCAT. This assay uses whole, live-attenuated L. intracellularis bacteria derived from a commercial vaccine. For the assay, we set up the optimal antigen concentration (106 bacterium/assay), primary antibody dilution (1:100), time of incubation (20 min), antigen stability (15 days), precision (coefficient of variation - CV < 10%), reproducibility (CV ≤ 13%) and Receiver Operating Characteristic (ROC). When using a cut-off of >15.15% for FCAT, we determined that it showed a sensitivity of 98.8% and specificity of 100%. The rate of agreement with IPMA was 84.09% with a kappa index of 0.66. FCAT was used to screen 1,000 sera from non-vaccinated pigs housed in 22 different farms and we found that 730 pigs (73%) from 16 farms (72.7%) had L. intracellularis IgG. This high prevalence confirms that L. intracellularis is endemic on Brazilian pig farms. Finally, we determined that FCAT is an easy to perform diagnostic assay and we would highly recommend it for: i) seroepidemiological studies; ii) evaluation of infection dynamics; and iii) characterization of the humoral response profile induced by vaccines.


Assuntos
Infecções por Desulfovibrionaceae , Doenças Inflamatórias Intestinais , Lawsonia (Bactéria) , Suínos , Animais , Infecções por Desulfovibrionaceae/diagnóstico , Infecções por Desulfovibrionaceae/veterinária , Infecções por Desulfovibrionaceae/microbiologia , Citometria de Fluxo , Reprodutibilidade dos Testes
2.
Vaccines (Basel) ; 8(2)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443540

RESUMO

Vaccination is the most efficient method of protection against influenza infections. However, the rapidly mutating viruses and development of new strains make it necessary to develop new influenza vaccines annually. Hence, vaccines that stimulate cross-protection against multiple influenza subtypes are highly sought. Recent evidence suggests that adjuvants such as PCEP that promote Th1-type T cell and Th2-type T cell immune responses and broad-spectrum immune responses may confer cross-protection against heterologous influenza strains. In this study, we evaluated whether the immunogenic and protective potential of PCEP-adjuvanted inactivated swine influenza virus H1N1 vaccine can protect pigs immunized against live H3N2 virus. Piglets were vaccinated via the intradermal route with PCEP-adjuvanted inactivated swine influenza virus (SIV) H1N1 vaccine, boosted at day 21 with the same vaccines then challenged with infectious SIV H3N2 virus at day 35 via the tracheobronchial route. The pigs showed significant anti-H1N1 SIV specific antibody titres and H1N1 SIV neutralizing antibody titres, and these serum titres remained after the challenge with the H3N2 virus. In contrast, vaccination with anti-H1N1 SIV did not trigger anti-H3N2 SIV antibody titres or neutralizing antibody titres and these titres remained low until pigs were challenged with H3N2 SIV. At necropsy (six days after challenge), we collected prescapular lymph nodes and tracheobronchial draining the vaccination sites and challenge site, respectively. ELISPOTs from lymph node cells restimulated ex vivo with inactivated SIV H1N1 showed significant production of IFN-γ in the tracheobronchial cells, but not the prescapular lymph nodes. In contrast, lymph node cells restimulated ex vivo with inactivated SIV H1N1 showed significantly higher IL-13 and IL-17A in the prescapular lymph nodes draining the vaccination sites relative to unchallenged animals. Lung lesion scores show that intradermal vaccination with H1N1 SIV plus PCEP did not prevent lesions when the animals were challenged with H3N2. These results confirm previous findings that PCEP is effective as a vaccine adjuvant in that it induces strong immune responses and protects against homologous swine influenza H1N1 virus, but the experimental H1N1 vaccine failed to cross-protect against heterologous H3N2 virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA