Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(15): 7731-7746, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986057

RESUMO

The nuclear pore complex (NPC) machinery is emerging as an important determinant in the maintenance of genome integrity and sensitivity to DNA double-strand break (DSB)-inducing agents, such as ionising radiation (IR). In this study, using a high-throughput siRNA screen, we identified the central channel NPC protein Nup54, and concomitantly its molecular partners Nup62 and Nup58, as novel factors implicated in radiosensitivity. Nup54 depletion caused an increase in cell death by mitotic catastrophe after IR, and specifically enhanced both the duration of the G2 arrest and the radiosensitivity of cells that contained replicated DNA at the time of IR exposure. Nup54-depleted cells also exhibited increased formation of chromosome aberrations arisen from replicated DNA. Interestingly, we found that Nup54 is epistatic with the homologous recombination (HR) factor Rad51. Moreover, using specific DNA damage repair reporters, we observed a decreased HR repair activity upon Nup54 knockdown. In agreement with a role in HR repair, we also demonstrated a decreased formation of HR-linked DNA synthesis foci and sister chromatid exchanges after IR in cells depleted of Nup54. Our study reveals a novel role for Nup54 in the response to IR and the maintenance of HR-mediated genome integrity.


Assuntos
Replicação do DNA , DNA/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Reparo de DNA por Recombinação , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Células HeLa , Humanos , Células MCF-7 , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Radiação Ionizante , Troca de Cromátide Irmã/efeitos da radiação
2.
Curr Biol ; 27(3): 408-414, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089515

RESUMO

Eukaryotic plasma membrane organization theory has long been controversial, in part due to a dearth of suitably high-resolution techniques to probe molecular architecture in situ and integrate information from diverse data streams [1]. Notably, clustered patterning of membrane proteins is a commonly conserved feature across diverse protein families (reviewed in [2]), including the SNAREs [3], SM proteins [4, 5], ion channels [6, 7], and receptors (e.g., [8]). Much effort has gone into analyzing the behavior of secretory organelles [9-13], and understanding the relationship between the membrane and proximal organelles [4, 5, 12, 14] is an essential goal for cell biology as broad concepts or rules may be established. Here we explore the generally accepted model that vesicles at the plasmalemma are guided by cytoskeletal tracks to specific sites on the membrane that have clustered molecular machinery for secretion [15], organized in part by the local lipid composition [16]. To increase our understanding of these fundamental processes, we integrated nanoscopy and spectroscopy of the secretory machinery with organelle tracking data in a mathematical model, iterating with knockdown cell models. We find that repeated routes followed by successive vesicles, the re-use of similar fusion sites, and the apparently distinct vesicle "pools" are all fashioned by the Brownian behavior of organelles overlaid on navigation between non-reactive secretory protein molecular depots patterned at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Organelas/metabolismo , Vesículas Secretórias/metabolismo , Animais , Transporte Biológico , Células PC12 , Ratos , Proteínas SNARE/metabolismo
3.
R Soc Open Sci ; 3(5): 160225, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27293801

RESUMO

Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

4.
Sci Rep ; 6: 19993, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822455

RESUMO

Super-resolution microscopy is transforming our understanding of biology but accessibility is limited by its technical complexity, high costs and the requirement for bespoke sample preparation. We present a novel, simple and multi-color super-resolution microscopy technique, called translation microscopy (TRAM), in which a super-resolution image is restored from multiple diffraction-limited resolution observations using a conventional microscope whilst translating the sample in the image plane. TRAM can be implemented using any microscope, delivering up to 7-fold resolution improvement. We compare TRAM with other super-resolution imaging modalities, including gated stimulated emission deletion (gSTED) microscopy and atomic force microscopy (AFM). We further developed novel 'ground-truth' DNA origami nano-structures to characterize TRAM, as well as applying it to a multi-color dye-stained cellular sample to demonstrate its fidelity, ease of use and utility for cell biology.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Células Endoteliais , Microscopia de Fluorescência/normas , Pontos Quânticos
5.
Nat Commun ; 5: 5774, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25517944

RESUMO

Neuronal synapses are among the most scrutinized of cellular systems, serving as a model for all membrane trafficking studies. Despite this, synaptic biology has proven difficult to interrogate directly in situ due to the small size and dynamic nature of central synapses and the molecules within them. Here we determine the spatial and temporal interaction status of presynaptic proteins, imaging large cohorts of single molecules inside active synapses. Measuring rapid interaction dynamics during synaptic depolarization identified the small number of syntaxin1a and munc18-1 protein molecules required to support synaptic vesicle exocytosis. After vesicle fusion and subsequent SNARE complex disassembly, a prompt switch in syntaxin1a and munc18-1-binding mode, regulated by charge alteration on the syntaxin1a N-terminal, sequesters monomeric syntaxin1a from other disassembled fusion complex components, preventing ectopic SNARE complex formation, readying the synapse for subsequent rounds of neurotransmission.


Assuntos
Exocitose/genética , Proteínas Munc18/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Toxinas Botulínicas Tipo A/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fusão de Membrana , Imagem Molecular , Proteínas Munc18/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Sintaxina 1/genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA