Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Anesth Analg ; 115(2): 284-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22253270

RESUMO

BACKGROUND: A new benzodiazepine, remimazolam, which is rapidly metabolized by tissue esterases to an inactive metabolite, has been developed to permit a fast onset, a short, predictable duration of sedative action, and a more rapid recovery profile than currently available drugs. We report on modeling of the data and simulations of dosage regimens for future study. METHODS: A phase I, single-center, double-blind, placebo and active controlled, randomized, single-dose escalation study was conducted. Fifty-four healthy subjects in 9 groups received a single 1-minute IV infusion of remimazolam (0.01-0.3 mg/kg). There were 18 control subjects taking midazolam and 9 placebos. Population pharmacokinetic and pharmacodynamic modeling of the data was undertaken and the parameters obtained were used for Monte-Carlo simulations of alternative dosing regimens. RESULTS: A 4-compartment mammillary pharmacokinetic model of midazolam and a physiologically based recirculation model of remimazolam were fitted to the observed plasma levels. The recirculation model of remimazolam explained the observed high venous, compared with arterial, concentrations at later time points. The 2 models were used to simulate the arterial concentrations required for the pharmacodynamic models of sedation (Bispectral Index and Modified Observer's Assessment of Alertness/Sedation [MOAA/S]) and gave population mean pharmacodynamic parameters as follows: Bispectral Index-IC(50): 0.26, 0.07 µg/mL; γ: 1.6, 8.6; k(e0): 0.14, 0.053 min(-1); I(MAX): 39, 19, and MOAA/S-IC(50): 0.4, 0.08 µg/mL; γ: 1.4, 3.4; k(e0): 0.25, 0.050 min(-1) for remimazolam and midazolam, respectively. Simulations to obtain >70% of the population with MOAA/S scores of 2 to 4 were developed. This criterion was achieved (95% confidence intervals: 67%-74%) with a 6-mg initial loading dose of remimazolam followed by 3-mg maintenance doses at >2-minute intervals. Recovery to a MOAA/S score of 5 is predicted to be within 16 minutes for 89% (95% confidence intervals: 87%-91%) of the treated population after this loading/maintenance dose regimen. CONCLUSIONS: Population pharmacokinetic and pharmacodynamic models developed for remimazolam and midazolam fitted the observed data well. Simulations based on these models show that remimazolam delivers extremely rapid sedation, with maximal effect being reached within 3 minutes of the start of treatment. This property will enable maintenance doses to be given more accurately than with slower-acting drugs. No covariate effects considered to be clinically relevant were observed, suggesting that dosing by body weight may offer no advantage over fixed doses in terms of consistency of exposure to remimazolam within the weight range studied (65-90 kg).


Assuntos
Benzodiazepinas/farmacocinética , Simulação por Computador , Hipnóticos e Sedativos/farmacocinética , Midazolam/farmacocinética , Modelos Biológicos , Adulto , Benzodiazepinas/administração & dosagem , Benzodiazepinas/efeitos adversos , Benzodiazepinas/sangue , Estado de Consciência/efeitos dos fármacos , Monitores de Consciência , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Hipnóticos e Sedativos/administração & dosagem , Hipnóticos e Sedativos/efeitos adversos , Hipnóticos e Sedativos/sangue , Infusões Intravenosas , Masculino , Maryland , Taxa de Depuração Metabólica , Midazolam/administração & dosagem , Midazolam/efeitos adversos , Midazolam/sangue , Pessoa de Meia-Idade , Método de Monte Carlo , Placebos , Resultado do Tratamento , Adulto Jovem
2.
AIDS ; 16(17): 2295-301, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12441801

RESUMO

BACKGROUND: Various drug transporters of the ATP-binding cassette (ABC) family restrict the oral bioavailability and cellular, brain, testis, cerebrospinal fluid and fetal penetration of substrate drugs. MDRI P-glycoprotein (P-gp) has been demonstrated to transport most HIV protease inhibitors (HPI) and to reduce their oral bioavailability and lymphocyte, brain, testis and fetal penetration, possibly resulting in major limiting effects on the therapeutic efficacy of these drugs. OBJECTIVES: To investigate whether the ABC transporters MRP1, MRP2, MRP3, MRP5 and breast cancer resistance protein 1 (Bcrp1) are efficient transporters of the HPI saquinavir, ritonavir and indinavir. METHODS: Polarized epithelial non-human (canine) cell lines transduced with human or murine complementary DNA (cDNA) for each of the transporters were used to study transepithelial transport of the HPI. RESULTS: MRP2 efficiently transported saquinavir, ritonavir and indinavir and this transport could be enhanced by probenecid. Sulfinpyrazone was also able to enhance MRP2-mediated saquinavir transport. In contrast, MRP1, MRP3, MRP5, or Bcrp1 did not efficiently transport the HPI tested. CONCLUSIONS: Human MRP2 actively transports several HPI and could, based on its known and assumed tissue distribution, therefore reduce HPI oral bioavailability. It may also limit brain and fetal penetration of these drugs and increase their hepatobiliary, intestinal and renal clearance. MRP2 function and enhancement of its activity could adversely affect the therapeutic efficacy, including the pharmacological sanctuary penetration, of HPI. In vivo inhibition of MRP2 function might, therefore, improve HIV/AIDS therapy.


Assuntos
Inibidores da Protease de HIV/farmacocinética , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos/farmacologia , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/farmacologia , Animais , Transporte Biológico , Linhagem Celular , Cães , Interações Medicamentosas , Resistência a Múltiplos Medicamentos , Células Epiteliais/metabolismo , Humanos , Indinavir/farmacocinética , Proteína 2 Associada à Farmacorresistência Múltipla , Ritonavir/farmacocinética , Saquinavir/farmacocinética , Transdução Genética
3.
Toxicol Pathol ; 33(3): 356-64, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15805073

RESUMO

An unexpected dose related increase in oral squamous cell carcinomas was observed in a standard 2-year carcinogenicity study with a novel calcium channel blocker, in which Wistar rats received daily doses of 0, 1.5, 7, 20, or 40 mg/kg of the compound mixed with a standard diet containing fibers from barley. This finding was associated with an increased incidence of severe (destructive) periodontitis and the formation of oro-nasal fistulae at the 2 highest doses. Five assays of the compound for genotoxicity were negative indicating that a genotoxic effect was highly improbable. To investigate the underlying pathogenic mechanisms a second 2-year study in the same strain of rats was initiated and the influence of the diet and/or a possible local irritancy by the drug was assessed. In this second study the compound was administered by oral gavage at daily doses of 0, 7, or 40 mg/kg (later reduced to 20 mg/kg due to systemic intolerance) to rats maintained either on the standard diet or on a low fiber diet assumed to be less aggressive in terms of inducing periodontal lesions. Dose dependent gingival overgrowth (a class-related effect) was observed in the incisor and molar teeth area of all treated groups but was independent of the diet used. No oral tumors were found in the standard diet or low fiber diet controls and all treatment groups fed the low fiber diet, whereas in the high-dose group fed the standard diet a total of 8 oral squamous cell carcinomas were detected in association with an increased incidence of severe periodontitis. These results indicate that the increased incidence of squamous cell carcinomas observed upon chronic administration of the compound is not due to a direct tumorigenic effect of the drug. Tumor formation is attributable to severe periodontal disease favored by the diet and class related gingival overgrowth.


Assuntos
Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Dieta , Neoplasias Bucais/metabolismo , Administração Oral , Animais , Bloqueadores dos Canais de Cálcio/metabolismo , Canais de Cálcio/metabolismo , Carcinoma de Células Escamosas/patologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Mibefradil/química , Mibefradil/metabolismo , Mibefradil/toxicidade , Estrutura Molecular , Neoplasias Bucais/patologia , Ratos , Ratos Wistar , Testes de Toxicidade Crônica
4.
J Pharmacol Exp Ther ; 304(2): 596-602, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12538811

RESUMO

Using a mouse model, we tested the effects of in vivo P-glycoprotein inhibition to enhance the oral uptake and penetration into pharmacological sanctuary sites of the human immunodeficiency virus protease inhibitor (HPI) saquinavir. The HPI ritonavir is frequently coadministered with saquinavir to improve saquinavir plasma levels since it strongly reduces the cytochrome P450 3A4-mediated metabolism of saquinavir. Previously, we demonstrated that ritonavir is not an efficient P-glycoprotein inhibitor in vivo, evidenced by the limited oral uptake of saquinavir and its penetration into brain and fetus. Increasing drug concentrations in these sites using more effective P-gp inhibitors might improve therapy but could also lead to toxicity. We orally coadministered ritonavir and saquinavir to mice, with or without the potent P-glycoprotein inhibitor N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918). Upon GF120918 coadministration, two of seven P-glycoprotein-deficient animals died. Using a decreased ritonavir dose, GF120918 coadministration led to a 4.4-fold increase in the saquinavir plasma area under the curve in wild-type mice, whereas no such effect was observed in P-glycoprotein-deficient mice. Despite the decreased ritonavir dose, all mice did suffer from impaired gastric emptying. Including GF120918 in a multiple (twice daily) dosing regimen, we found continued accumulation of saquinavir in brain over several days, resulting in 10-fold higher levels compared with vehicle-treated mice. Transient ritonavir-related neurotoxicity, however, was observed after the fourth and final drug dosing. Clinical attempts to efficiently inhibit P-glycoprotein function for improved HPI disposition may therefore be feasible, but they should be performed without ritonavir and monitored carefully for unexpected toxicities.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Ritonavir/efeitos adversos , Ritonavir/farmacocinética , Saquinavir/efeitos adversos , Saquinavir/farmacocinética , Tetra-Hidroisoquinolinas , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Animais , Quimioterapia Combinada , Feminino , Isoquinolinas/farmacologia , Masculino , Camundongos , Camundongos Knockout , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA