Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Dermatol ; 190(1): 80-93, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681509

RESUMO

BACKGROUND: Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES: To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS: Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS: We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS: RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/etiologia , Células Endoteliais/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/complicações , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias Cutâneas/patologia
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901755

RESUMO

Psoriasis is an inflammatory skin disease characterized by increased neo-vascularization, keratinocyte hyperproliferation, a pro-inflammatory cytokine milieu and immune cell infiltration. Diacerein is an anti-inflammatory drug, modulating immune cell functions, including expression and production of cytokines, in different inflammatory conditions. Therefore, we hypothesized that topical diacerein has beneficial effects on the course of psoriasis. The current study aimed to evaluate the effect of topical diacerein on imiquimod (IMQ)-induced psoriasis in C57BL/6 mice. Topical diacerein was observed to be safe without any adverse side effects in healthy or psoriatic animals. Our results demonstrated that diacerein significantly alleviated the psoriasiform-like skin inflammation over a 7-day period. Furthermore, diacerein significantly diminished the psoriasis-associated splenomegaly, indicating a systemic effect of the drug. Remarkably, we observed significantly reduced infiltration of CD11c+ dendritic cells (DCs) into the skin and spleen of psoriatic mice with diacerein treatment. As CD11c+ DCs play a pivotal role in psoriasis pathology, we consider diacerein to be a promising novel therapeutic candidate for psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Baço/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Psoríase/patologia , Dermatite/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055192

RESUMO

Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Biologia Computacional/métodos , Epidermólise Bolhosa Distrófica/complicações , Transplante de Órgãos/efeitos adversos , Neoplasias Cutâneas/genética , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Mineração de Dados , Reposicionamento de Medicamentos , Epidermólise Bolhosa Distrófica/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , RNA-Seq , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia
4.
Biochem Soc Trans ; 49(3): 1133-1146, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34013353

RESUMO

Strikingly, evolution shaped similar tubular structures at the µm to mm scale in roots of sessile plants and in small intestines of mobile mammals to ensure an efficient transfer of essential nutrients from 'dead matter' into biota. These structures, named root hairs (RHs) in plants and villi in mammals, numerously stretch into the environment, and extremely enlarge root and intestine surfaces. They are believed to forage for nutrients, and mediate their uptake. While the conceptional understanding of plant RH function in hydromineral nutrition seems clear, experimental evidence presented in textbooks is restricted to a very limited number of reference-nutrients. Here, we make an element-by-element journey through the periodic table and link individual nutrient availabilities to the development, structure/shape and function of RHs. Based on recent developments in molecular biology and the identification of mutants differing in number, length or other shape-related characteristics of RHs in various plant species, we present comprehensive advances in (i) the physiological role of RHs for the uptake of specific nutrients, (ii) the developmental and morphological responses of RHs to element availability and (iii) RH-localized nutrient transport proteins. Our update identifies crucial roles of RHs for hydromineral nutrition, mostly under nutrient and/or water limiting conditions, and highlights the influence of certain mineral availabilities on early stages of RH development, suggesting that nutritional stimuli, as deficiencies in P, Mn or B, can even dominate over intrinsic developmental programs underlying RH differentiation.


Assuntos
Biomassa , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química , Água/metabolismo , Animais , Transporte Biológico , Mamíferos/metabolismo , Microvilosidades/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
5.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805154

RESUMO

Intermediate junctional epidermolysis bullosa caused by mutations in the COL17A1 gene is characterized by the frequent development of blisters and erosions on the skin and mucous membranes. The rarity of the disease and the heterogeneity of the underlying mutations renders therapy developments challenging. However, the high number of short in-frame exons facilitates the use of antisense oligonucleotides (AON) to restore collagen 17 (C17) expression by inducing exon skipping. In a personalized approach, we designed and tested three AONs in combination with a cationic liposomal carrier for their ability to induce skipping of COL17A1 exon 7 in 2D culture and in 3D skin equivalents. We show that AON-induced exon skipping excludes the targeted exon from pre-mRNA processing, which restores the reading frame, leading to the expression of a slightly truncated protein. Furthermore, the expression and correct deposition of C17 at the dermal-epidermal junction indicates its functionality. Thus, we assume AON-mediated exon skipping to be a promising tool for the treatment of junctional epidermolysis bullosa, particularly applicable in a personalized manner for rare genotypes.


Assuntos
Autoantígenos/metabolismo , Epidermólise Bolhosa Juncional/genética , Colágenos não Fibrilares/metabolismo , Oligonucleotídeos Antissenso/genética , Splicing de RNA , Processamento Alternativo , Biópsia , Linhagem Celular , Sobrevivência Celular , Epidermólise Bolhosa Juncional/metabolismo , Epidermólise Bolhosa Juncional/terapia , Éxons , Genótipo , Homozigoto , Humanos , Queratinócitos/citologia , Lipossomos/química , Mutação , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , Colágeno Tipo XVII
6.
Cell Commun Signal ; 18(1): 61, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276641

RESUMO

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. METHODS: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. RESULTS: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. CONCLUSION: The discovery that miR-10b mediates an aspect of cancer stemness - that of enhanced tumor cell adhesion, known to facilitate metastatic colonization - provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Cultura Primária de Células , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
7.
Plant Cell ; 27(4): 1200-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829439

RESUMO

Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S globulin storage proteins accumulated and were missorted to the apoplast. Immunoelectron microscopy revealed the presence of vesicle clusters containing storage protein precursors and vacuolar sorting receptors (VSRs). Isolation and identification of complexes of VSRs with unprocessed 12S globulin by 2D blue-native PAGE/SDS-PAGE indicated that the nhx5 nhx6 knockouts showed compromised receptor-cargo association. In vivo interaction studies using bimolecular fluorescence complementation between VSR2;1, aleurain, and 12S globulin suggested that nhx5 nhx6 knockouts showed a significant reduction of VSR binding to both cargoes. In vivo pH measurements indicated that the lumens of VSR compartments containing aleurain, as well as the trans-Golgi network and prevacuolar compartments, were significantly more acidic in nhx5 nhx6 knockouts. This work demonstrates the importance of NHX5 and NHX6 in maintaining endomembrane luminal pH and supports the notion that proper vacuolar trafficking and proteolytic processing of storage proteins require endomembrane pH homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vacúolos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas , Transporte Proteico/fisiologia , Vacúolos/genética , Rede trans-Golgi/metabolismo
8.
Int J Mol Sci ; 19(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360441

RESUMO

The protein tyrosine phosphatase interacting protein 51 (PTPIP51) regulates and interconnects signaling pathways, such as the mitogen-activated protein kinase (MAPK) pathway and an abundance of different others, e.g., Akt signaling, NF-κB signaling, and the communication between different cell organelles. PTPIP51 acts as a scaffold protein for signaling proteins, e.g., Raf-1, epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (Her2), as well as for other scaffold proteins, e.g., 14-3-3 proteins. These interactions are governed by the phosphorylation of serine and tyrosine residues of PTPIP51. The phosphorylation status is finely tuned by receptor tyrosine kinases (EGFR, Her2), non-receptor tyrosine kinases (c-Src) and the phosphatase protein tyrosine phosphatase 1B (PTP1B). This review addresses various diseases which display at least one alteration in these enzymes regulating PTPIP51-interactions. The objective of this review is to summarize the knowledge of the MAPK-related interactome of PTPIP51 for several tumor entities and metabolic disorders.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteínas Mitocondriais/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteínas Tirosina Fosfatases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Cell Tissue Res ; 368(3): 411-423, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27734150

RESUMO

The protein tyrosine phosphatase interacting protein 51 (PTPIP51) is thought to regulate crucial cellular functions such as mitosis, apoptosis, migration, differentiation and communication between organelles as a scaffold protein. These diverse functions are modulated by the tyrosine/serine phosphorylation status of PTPIP51. This review interconnects the insights obtained about the action of PTPIP51 in mitogen-activated protein kinase signaling, nuclear factor kB signaling, calcium homeostasis and chromosomal segregation and identifies important signaling hubs. The interference of PTPIP51 in such multiprotein complexes and their PTPIP51-modulated cross-talk makes PTPIP51 an ideal target for novel drugs such as the small molecule LDC-3. Graphical Abstract ᅟ.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Animais , Compartimento Celular , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
10.
J Exp Bot ; 68(3): 687-700, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204664

RESUMO

Boron (B) toxicity is a nutritional disorder affecting crop production in many parts of the world. This study explored genetic factors associated with B tolerance in rice (Oryza sativa L.) through an integrated genome mapping and transcriptomic approach. Variation in B tolerance was first evaluated by screening a panel of 137 indica genotypes in B toxic conditions (+2 mM B), followed by genome-wide association study (GWAS). Leaf bronzing and greenness were significantly correlated with shoot and root dry weight, but B uptake was not correlated with any stress phenotype. Single nucleotide polymorphism (SNP) markers exceeding a significance value of ­log10P>4.0 were obtained for four traits, namely leaf bronzing, shoot dry weight, root dry weight, and root length. Linkage disequilibrium block analysis of the corresponding chromosomal regions revealed candidate loci containing 75 gene models. Two contrasting genotypes from the panel were selected for transcriptomic analysis, which included gene ontology enrichment analysis of differentially regulated genes and investigating transcriptional responses of GWAS candidate genes. Characteristic expression patterns associated with tolerance or sensitivity were seen in genes related to biochemical binding, transport, transcriptional regulation, and redox homeostasis. These results advance the understanding of genetic and physiological factors associated with B tolerance in rice.


Assuntos
Boro/toxicidade , Estudo de Associação Genômica Ampla , Oryza/efeitos dos fármacos , Oryza/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genótipo , Desequilíbrio de Ligação , Oryza/metabolismo , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico
12.
Environ Sci Technol ; 49(14): 8721-30, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26083946

RESUMO

Air pollution is associated with increased risk of cardiovascular and pulmonary diseases, but conventional air quality monitoring gives no information about biological consequences. Exposing human lung cells at the air-liquid interface (ALI) to ambient aerosol could help identify acute biological responses. This study investigated electrode-assisted deposition of diesel exhaust aerosol (DEA) on human lung epithelial cells (A549) in a prototype exposure chamber. A549 cells were exposed to DEA at the ALI and under submerged conditions in different electrostatic fields (EFs) and were assessed for cell viability, membrane integrity, and IL-8 secretion. Qualitative differences of the DEA and its deposition under different EFs were characterized using scanning mobility particle sizer (SMPS) measurements, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Upon exposure to DEA only, cell viability decreased and membrane impairment increased for cells at the ALI; submerged cells were unaffected. These responses were enhanced upon application of an EF, as was DEA deposition. No adverse effects were observed for filtered DEA or air only, confirming particle-induced responses. The prototype exposure chamber proved suitable for testing DEA-induced biological responses of cells at the ALI using electrode-assisted deposition and may be useful for analysis of other air pollutants.


Assuntos
Aerossóis/toxicidade , Poluentes Atmosféricos/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/patologia , Eletricidade Estática , Emissões de Veículos/análise , Poluição do Ar/análise , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Microscopia Eletrônica de Transmissão
13.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444397

RESUMO

Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.

14.
Cell Tissue Res ; 344(2): 189-205, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21369858

RESUMO

Protein tyrosine phosphatase interacting protein 51 (PTPIP51) interacts both in vitro and in vivo with PTP1B, a protein tyrosine phosphatase involved in cellular regulation. PTPIP51 is known to be expressed in many different types of tissues. It is involved in cellular processes such as proliferation, differentiation and apoptosis. Nevertheless, the exact cellular function of PTPIP51 is still unknown. The present review summarizes our current knowledge of the PTPIP51 gene and its mRNA and protein structure.


Assuntos
Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Proteínas Tirosina Fosfatases/biossíntese , Proteínas Tirosina Fosfatases/genética , Animais , Regulação da Expressão Gênica , Humanos , Immunoblotting , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos
15.
Hum Reprod ; 26(1): 59-66, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21112954

RESUMO

BACKGROUND: Dysfunction of cellular processes in the testes can lead to infertility, tumourigenesis or other testicular disorders. 14-3-3 proteins are known to play pivotal roles in cellular communication, signal transduction, intracellular trafficking, cell-cycle control, transcription and cytoskeletal structure and have been implicated in several diseases including tumourigenesis. Here we investigated the expression of the 14-3-3 beta isoform in healthy testicular tissues of humans, rats and mice as well as in tissues of Sertoli-cell-only (SCO) syndrome, intratubular germ cell neoplasia (IGCN) and classical seminoma. METHODS: Samples of healthy and diseased testes from humans, rats and mice were analysed by immunohistochemistry. For PCR, human testis cell lysates were used. Immunoblot analyses of rats and humans healthy testes were performed. Duolink proximity ligation assay (PLA) and co-immunoprecipitation (Co-IP) were carried out to investigate interactions between 14-3-3 beta and vimentin in human, rat and mouse testes. RESULTS: In healthy testes and SCO syndrome, strong 14-3-3 beta-positive cells could be identified as Sertoli cells. Furthermore, 14-3-3 beta proteins were detected in cells of the peritubular stroma. In samples of IGCN and classical seminoma, the malignant transformed cells stained positive for 14-3-3 beta antigen. Immunoblot analyses revealed the presence of 14-3-3 beta in healthy testicular tissues. 14-3-3 beta mRNA transcripts were detected in cell lysates of healthy human testes. Interaction of 14-3-3 beta with the intermediate filament vimentin was revealed by Duolink PLA and Co-IP. Co-IP experiments identified tubulin as another 14-3-3 beta binding partner. CONCLUSIONS: Our data suggest that 14-3-3 beta expression is essential for normal spermatogenesis by interacting with vimentin in Sertoli cells. Additionally, 14-3-3 beta expression in malignant transformed cells in IGCN and classical seminoma may lead to tumourigenesis and cell survival.


Assuntos
Proteínas 14-3-3/metabolismo , Doenças Testiculares/metabolismo , Testículo/metabolismo , Animais , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Reação em Cadeia da Polimerase , Ratos , Seminoma/metabolismo , Síndrome de Células de Sertoli/metabolismo , Vimentina/metabolismo
16.
Plant Physiol Biochem ; 161: 156-165, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33609922

RESUMO

Ammonium (NH4+) and nitrate (NO3-) conversely alter pH of the rooting medium, and thus differentially affect the equilibrium between boric acid and borate in soil solution. This can alter boron (B) uptake by plants, which is passive under high, but facilitated (boric acid) or active (borate) under low B supply. Therefore, the effect of NH4+ and NO3- forms was investigated on the growth, 10B uptake rate and accumulation, and expression of B transporters in Brassica napus grown with low (1 µM) or high (100 µM) 10B for five days in the nutrient solution. At the low 10B level, NO3--fed plants had the same specific 10B uptake rate, 10B accumulation and xylem 10B concentration as NH4NO3-fed plants but these attributes were reduced at the high 10B level. BnaBOR1;2 and BnaNIP5;1 were upregulated in roots of NO3-fed plants at low 10B supply. NH4+-fed plants had substantially lower dry matters; due to nutrient solution acidification (2.0 units)-induced deficiency of nitrogen, potassium, magnesium, and iron in plant shoots. Reduced transpiration rates resulted in lower 10B uptake rate and accumulation in the roots and shoots of NH4+-fed plants. BnaNIP5;1 in roots, while both BnaBOR1;2 and BnaNIP5;1 in shoots were upregulated in NH4+-fed plants at low 10B level. Collectively, NH4+-induced acidity and consequent lowering of 10B uptake induced the upregulation of B transport mechanisms, even at marginal 10B concentrations, while NO3--induced alkalinization resulted in altered B distribution between roots and shoots due to restricted B transport, especially at higher 10B supply.


Assuntos
Compostos de Amônio , Brassica napus , Boro , Nitratos , Nitrogênio , Raízes de Plantas , Brotos de Planta
17.
Blood Cells Mol Dis ; 45(2): 159-68, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20627780

RESUMO

Protein tyrosine phosphatase interacting protein 51 (PTPIP51) was identified as an in vitro interacting partner of protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP). The full-length form of PTPIP51 encompasses 470aas and has a molecular weight of 52kDa. The physiological function is poorly understood but an involvement in differentiation processes and apoptosis has been suggested. Preliminary observations suggested differences in PTPIP51 expression in blood cells. To analyze a possible involvement of PTPIP51 in hematopoietic processes, we studied its expression in samples of peripheral venous blood (PVB), umbilical cord blood (UCB) and human bone marrow (HBM). In both, PVB and UCB PTPIP51 expression was restricted to neutrophil granulocytes. In HBM samples, besides in mature neutrophil ganulocytes PTPIP51 protein and mRNA was present in myeloid precursor cells of neutrophils. The expression of PTPIP51 in neutrophil granulocytes was corroborated by immunoblot analysis exhibiting different molecular weight forms of PTPIP51 protein. Anti-peptide antibodies, identifying specific regions of the PTPIP51 protein (C-terminus, N-terminus and aas114-129) revealed a distinct isoform expression pattern in neutrophil granulocytes of different sources. In PVB and UCB neutrophil granulocytes reacted positive for all three peptide antibodies. In contrast, neutrophils of HBM express solely an N-terminal variant of PTPIP51 protein, lacking the C-terminal and aas114-129 sequence. Immunocytochemical results displayed a strict co-localization of PTPIP51 and PTP1B in PVB and UCB. The interaction of both proteins was verified by a proximity ligation assay. Neither proliferating cells, as identified by PCNA immunostaining, nor apoptotic cells, labeled by TUNEL assay, displayed an immunoreactivity for PTPIP51 in HBM. In fact, PTPIP51 expression was restricted to myeloid precursor cells undergoing differentiation. In blood cells therefore, PTPIP51 expression is restricted to differentiating and mature neutrophil granulocytes.


Assuntos
Proteínas Mitocondriais/sangue , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/imunologia , Células Progenitoras Mieloides/metabolismo , Neutrófilos/metabolismo , Proteínas Tirosina Fosfatases/sangue , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/imunologia , Sequência de Aminoácidos , Animais , Apoptose , Células Sanguíneas/metabolismo , Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Mapeamento de Epitopos , Sangue Fetal/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Ligação Proteica/fisiologia , Isoformas de Proteínas , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Coelhos
18.
Plant Cell Environ ; 33(6): 1039-48, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20132519

RESUMO

Boron (B) is an essential nutrient for N(2)-fixing legume-rhizobia symbioses, and the capacity of borate ions to bind and stabilize biomolecules is the basis of any B function. We used a borate-binding-specific resin and immunostaining techniques to identify B ligands important for the development of Pisum sativum-Rhizobium leguminosarum 3841 symbiotic nodules. arabinogalactan-extensin (AGPE), recognized by MAC 265 antibody, appeared heavily bound to the resin in extracts derived from B-sufficient, but not from B-deficient nodules. MAC 265 stained the infection threads and the extracellular matrix of cortical cells involved in the oxygen diffusion barrier. In B-deprived nodules, immunolocalization of MAC 265 antigens was significantly reduced. Leghaemoglobin (Lb) concentration largely decreased in B-deficient nodules. The absence of MAC 203 antigens in B-deficient nodules suggests a high internal oxygen concentration, as this antibody detects an epitope on the lipopolysaccharide (LPS) of bacteroids typically expressed in micro-aerobically grown R. leguminosarum 3841. However, B-deprived nodules did not accumulate oxidized lipids and proteins, and revealed a decrease in the activity of the major antioxidant enzyme ascorbate peroxidase (APX). Therefore, B deficiency reduced the stability of nodule macromolecules important for rhizobial infection, and for regulation of oxygen concentration, resulting in non-functional nodules, but did not appear to induce oxidative damage in low-B nodules.


Assuntos
Boro/metabolismo , Oxigênio/metabolismo , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Rhizobium leguminosarum/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Ascorbato Peroxidases , Boro/deficiência , Citosol/enzimologia , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas , Ligantes , Pisum sativum/enzimologia , Pisum sativum/genética , Peroxidases/metabolismo , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/genética , Frações Subcelulares/metabolismo
19.
Environ Sci Pollut Res Int ; 27(36): 45189-45208, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32780201

RESUMO

Formaldehyde is extraordinarily effective for fixation of human corpses and is routinely used in embalming solutions in anatomical dissection courses all over the world. High concentrations in vapors emitted from corpses embalmed with formaldehyde make it necessary to reduce the emission from cadavers for fulfilling tightening permissible exposure limits (PEL) worldwide. The study provides possible solutions to a problem faced by many anatomy labs. The emission of 50 human corpses was examined using 240 active personal and stationary samples with sampling tubes placed in the breathing area of probands or directly above the corpses. For measuring formaldehyde exposures along the dissection course, air samples were collected during the progress of dissection. Best results were achieved by a combination of post-embalming treatment with InfuTrace™, a formaldehyde binding solution applied to corpses fixed with 3% formaldehyde, and a modified ventilation system consisting of three long throw nozzles mounted vertically at the ceiling above the longitudinal axis of each dissection table. In this scenario, the inhalative exposure for students and teachers did not exceed 0.1 ppm during muscle dissection and 0.041 ppm during organ dissection, which are both dissection steps linked to high emission rates. The data emphasizes the necessity to use a combination of different methods - chemical polymerization of formaldehyde combined with a modified ventilation system - to reduce formaldehyde air loads far below the German PEL (0.3 ppm) and even the Japanese PEL (0.1 ppm) when using a standard 3%-formaldehyde fixation.


Assuntos
Poluição do Ar em Ambientes Fechados , Cadáver , Embalsamamento , Formaldeído/análise , Humanos , Laboratórios
20.
Future Sci OA ; 6(5): FSO463, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32518680

RESUMO

AIM: PTPIP51 interacts with NFκB signaling at the RelA and IκB level. NFκB signaling is linked to the initiation, progression and metastasis of breast cancer. Her2-amplified breast cancer cells frequently display activation of the NFκB signaling. We aimed to clarify the effects of NFκB inhibition on the NFκB- and MAPK-related interactome of PTPIP51 and cell viability in HaCat cells and SKBR3 cells. RESULTS: IKK-16 selectively reduced cell viability in SKBR3 cells. PDTC induced a formation of the Raf1/14-3-3/PTPIP51 complex in SKBR3 cells, indicating a shift of PTPIP51 into MAPK signaling. CONCLUSION: IKK-16 selectively inhibits cell viability of SKBR3 cells. In addition, PTPIP51 might serve as the mediator between NFκB signaling and the MAPK pathway in SKBR3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA