Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Glob Chang Biol ; 30(1): e17098, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273507

RESUMO

Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous 'blue carbon' studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon-storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R-shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision-making.


Assuntos
Carbono , Solo , Carbono/química , Solo/química , Ecossistema , Áreas Alagadas , Políticas
2.
Glob Chang Biol ; 29(8): 2313-2334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36630533

RESUMO

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.


Assuntos
Ecossistema , Áreas Alagadas , Metano/metabolismo , Regiões Árticas , Solo , Dióxido de Carbono/análise
3.
Environ Monit Assess ; 192(7): 458, 2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32594332

RESUMO

The US Geological Survey (USGS) is currently (2020) integrating its water science programs to better address the nation's greatest water resource challenges now and into the future. This integration will rely, in part, on data from 10 or more intensively monitored river basins from across the USA. A team of USGS scientists was convened to develop a systematic, quantitative approach to prioritize candidate basins for this monitoring investment to ensure that, as a group, the 10 basins will support the assessment and forecasting objectives of the major USGS water science programs. Candidate basins were the level-4 hydrologic units (HUC04) with some of the smaller HUC04s being combined; median candidate-basin area is 46,600 km2. Candidate basins for the contiguous United States (CONUS) were grouped into 18 hydrologic regions. Ten geospatial variables representing land use, climate change, water use, water-balance components, streamflow alteration, fire risk, and ecosystem sensitivity were selected to rank candidate basins within each of the 18 hydrologic regions. The two highest ranking candidate basins in each of the 18 regions were identified as finalists for selection as "Integrated Water Science Basins"; final selection will consider input from a variety of stakeholders. The regional framework, with only one basin selected per region, ensures that as a group, the basins represent the range in major drivers of the hydrologic cycle. Ranking within each region, primarily based on anthropogenic stressors of water resources, ensures that settings representing important water-resource challenges for the nation will be studied.


Assuntos
Ecossistema , Rios , Monitoramento Ambiental , Hidrologia , Inquéritos e Questionários
4.
J Environ Qual ; 47(4): 830-838, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025065

RESUMO

Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice ( L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g (range: <0.007-2.1 ng g). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76-110 ng m) and THg (1947-7224 ng m) during the growing season, and net exporters of MeHg (35-200 ng m) and THg (248-6496 ng m) during the fallow season. At harvest, 190 to 700 ng MeHg m and 1400 to 1700 ng THg m were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m and 7000-10,500 ng m THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.


Assuntos
Compostos de Metilmercúrio/análise , Oryza , Poluentes Químicos da Água/análise , California , Monitoramento Ambiental , Mercúrio , Compostos de Metilmercúrio/química , Solo , Poluentes Químicos da Água/química
6.
J Environ Qual ; 46(1): 133-142, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28177412

RESUMO

Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice ( L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L, range 0.15-0.23 ng L) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L, range 0.6-1.6 ng L) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.


Assuntos
Agricultura , Compostos de Metilmercúrio/análise , Oryza , Poluentes Químicos da Água/análise , California , Monitoramento Ambiental , Mercúrio , Rios
7.
Environ Sci Technol ; 50(2): 573-83, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26651265

RESUMO

The San Francisco Bay-Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.


Assuntos
Baías/análise , Monitoramento Ambiental/métodos , Estuários , Tecnologia de Sensoriamento Remoto , Qualidade da Água , California , Espectrofotometria Ultravioleta
8.
Environ Sci Technol ; 48(12): 6795-804, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24828335

RESUMO

The San Francisco Estuary, California, contains mercury (Hg) contamination originating from historical regional gold and Hg mining operations. We measured hydrological and geochemical variables in a tidal marsh of the Palo Alto Baylands Nature Preserve to determine the sources, location, and magnitude of hydrological fluxes of methylmercury (MeHg), a bioavailable Hg species of ecological and health concern. Based on measured concentrations and detailed finite-element simulation of coupled surface water and saturated-unsaturated groundwater flow, we found pore water MeHg was concentrated in unsaturated pockets that persisted over tidal cycles. These pockets, occurring over 16% of the marsh plain area, corresponded to the marsh root zone. Groundwater discharge (e.g., exfiltration) to the tidal channel represented a significant source of MeHg during low tide. We found that nonchannelized flow accounted for up to 20% of the MeHg flux to the estuary. The estimated net flux of filter-passing (0.45 µm) MeHg toward estuary was 10 ± 5 ng m(-2) day(-1) during a single 12-h tidal cycle, suggesting an annual MeHg load of 1.17 ± 0.58 kg when the estimated flux was applied to present tidal marshes and planned marsh restorations throughout the San Francisco Estuary.


Assuntos
Monitoramento Ambiental , Hidrologia , Compostos de Metilmercúrio/análise , Movimentos da Água , Áreas Alagadas , California , Estuários , Água Subterrânea/química , Mercúrio/análise , Mineração , Plantas/metabolismo , Porosidade , Poluentes Químicos da Água/análise
9.
Environ Res ; 133: 407-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972509

RESUMO

Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.


Assuntos
Exposição Ambiental , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Oryza/toxicidade , Agricultura/métodos , Animais , Mercúrio/química , Mercúrio/metabolismo , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/metabolismo , Oryza/química , Oryza/metabolismo
10.
Estuaries Coast ; 45(6): 1596-1614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903080

RESUMO

Tidal wetlands provide myriad ecosystem services across local to global scales. With their uncertain vulnerability or resilience to rising sea levels, there is a need for mapping flooding drivers and vulnerability proxies for these ecosystems at a national scale. However, tidal wetlands in the conterminous USA are diverse with differing elevation gradients, and tidal amplitudes, making broad geographic comparisons difficult. To address this, a national-scale map of relative tidal elevation (Z*MHW), a physical metric that normalizes elevation to tidal amplitude at mean high water (MHW), was constructed for the first time at 30 × 30-m resolution spanning the conterminous USA. Contrary to two study hypotheses, watershed-level median Z*MHW and its variability generally increased from north to south as a function of tidal amplitude and relative sea-level rise. These trends were also observed in a reanalysis of ground elevation data from the Pacific Coast by Janousek et al. (Estuaries and Coasts 42 (1): 85-98, 2019). Supporting a third hypothesis, propagated uncertainty in Z*MHW increased from north to south as light detection and ranging (LiDAR) errors had an outsized effect under narrowing tidal amplitudes. The drivers of Z*MHW and its variability are difficult to determine because several potential causal variables are correlated with latitude, but future studies could investigate highest astronomical tide and diurnal high tide inequality as drivers of median Z*MHW and Z*MHW variability, respectively. Watersheds of the Gulf Coast often had propagated Z*MHW uncertainty greater than the tidal amplitude itself emphasizing the diminished practicality of applying Z*MHW as a flooding proxy to microtidal wetlands. Future studies could focus on validating and improving these physical map products and using them for synoptic modeling of tidal wetland carbon dynamics and sea-level rise vulnerability analyses. Supplementary Information: The online version contains supplementary material available at 10.1007/s12237-021-01027-9.

11.
Front Soil Sci ; 1: 1-16, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34927139

RESUMO

Wetland soil stocks are important global repositories of carbon (C) but are difficult to quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal discontinuity. Merging scales of soil-survey spatial extents with wetland-specific point-based data offers an explicit, empirical and updatable improvement for regional and continental scale soil C stock assessments. Agency-collected and community-contributed soil datasets were compared for representativeness and bias, with the goal of producing a harmonized national map of wetland soil C stocks with error quantification for wetland areas of the conterminous United States (CONUS) identified by the USGS National Landcover Change Dataset. This allowed an empirical predictive model of SOC density to be applied across the entire CONUS using relational %OC distribution alone. A broken-stick quantile-regression model identified %OC with its relatively high analytical confidence as a key predictor of SOC density in soil segments; soils less than 6% OC (hereafter, mineral wetland soils, 85% of the dataset) had a strong linear relationship of %OC to SOC density (RMSE = 0.0059, ~4% mean RMSE) and soils greater than 6% OC (organic wetland soils, 15% of the dataset) had virtually no predictive relationship of %OC to SOC density (RMSE = 0.0348 g C cm-3, ~56% mean RMSE). Disaggregation by vegetation type, or region did not alter the breakpoint significantly (6% OC) nor improve model accuracies for inland and tidal wetlands. Similarly, SOC stocks in tidal wetlands were related to %OC, but without a mappable product for disaggregation to improve accuracy by soil class, region or depth. Our layered, harmonized CONUS wetland soil maps revised wetland SOC stock estimates downward by 24% (9.5 vs. 12.5Pg C) with the overestimation being entirely an issue of inland, organic wetland soils, (35% lower than SSURGO-derived SOC stocks). Further, SSURGO underestimated soil carbon stocks at depth, as modeled wetland SOC stocks for organic-rich soils showed significant preservation downcore in the NWCA dataset (<3% loss between 0-30 cm and 30-100 cm depths) in contrast to mineral-rich soils (37% downcore stock loss). Future CONUS wetland soil C assessments will benefit from focused attention on improved organic wetland soil measurements, land history, and spatial representativeness.

12.
Nat Commun ; 11(1): 2458, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424260

RESUMO

Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth's climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.

13.
Environ Toxicol Chem ; 38(10): 2178-2196, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343757

RESUMO

Wetland environments provide numerous ecosystem services but also facilitate methylmercury (MeHg) production and bioaccumulation. We developed a wetland-management technique to reduce MeHg concentrations in wetland fish and water. We physically modified seasonal wetlands by constructing open- and deep-water treatment cells at the downstream end of seasonal wetlands to promote naturally occurring MeHg-removal processes. We assessed the effectiveness of reducing mercury (Hg) concentrations in surface water and western mosquitofish that were caged at specific locations within 4 control and 4 treatment wetlands. Methylmercury concentrations in wetland water were successfully decreased within treatment cells during only the third year of study; however, treatment cells were not effective for reducing total Hg concentrations. Furthermore, treatment cells were not effective for reducing total Hg concentrations in wetland fish. Mercury concentrations in fish were not correlated with total Hg concentrations in filtered, particulate, or whole water; and the slope of the correlation with water MeHg concentrations differed between months. Fish total Hg concentrations were weakly correlated with water MeHg concentrations in April when fish were introduced into cages but were not correlated in May when fish were retrieved from cages. Fish total Hg concentrations were greater in treatment wetlands than in control wetlands the year after the treatment wetlands' construction but declined by the second year. During the third year, fish total Hg concentrations increased in both control and treatment wetlands after an unexpected regional flooding event. Overall, we found limited support for the use of open- and deep-water treatment cells at the downstream end of wetlands to reduce MeHg concentrations in water but not fish. We suggest that additional evaluation over a longer period of time is necessary. Environ Toxicol Chem 2019;38:2178-2196. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America..


Assuntos
Bioacumulação , Peixes/fisiologia , Compostos de Metilmercúrio/análise , Áreas Alagadas , Animais , Peso Corporal/efeitos dos fármacos , Monitoramento Ambiental , Inundações , Compostos de Metilmercúrio/toxicidade , Estações do Ano , Poluentes Químicos da Água/análise
15.
Sci Rep ; 8(1): 9478, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930337

RESUMO

Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m-3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.

16.
mBio ; 6(3): e00066-15, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25991679

RESUMO

UNLABELLED: Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. IMPORTANCE: Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage.


Assuntos
Biota , Microbiologia Ambiental , Redes e Vias Metabólicas/genética , Metagenoma , Metano/metabolismo , Áreas Alagadas , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , California , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Filogeografia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
17.
Sci Total Environ ; 484: 288-99, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24188689

RESUMO

As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall-winter period may be effective in limiting MeHg production within agricultural wetlands.


Assuntos
Agricultura , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , California , Monitoramento Ambiental , Mercúrio/análise , Estações do Ano
18.
Sci Total Environ ; 484: 300-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23809881

RESUMO

The role of live vegetation in sediment methylmercury (MeHg) production and associated biogeochemistry was examined in three types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields) and adjacent managed natural wetlands (cattail- and bulrush or tule-dominated) in the Yolo Bypass region of California's Central Valley, USA. During the active growing season for each wetland, a vegetated:de-vegetated paired plot experiment demonstrated that the presence of live plants enhanced microbial rates of mercury methylation by 20 to 669% (median=280%) compared to de-vegetated plots. Labile carbon exudation by roots appeared to be the primary mechanism by which microbial methylation was enhanced in the presence of vegetation. Pore-water acetate (pw[Ac]) decreased significantly with de-vegetation (63 to 99%) among all wetland types, and within cropped fields, pw[Ac] was correlated with both root density (r=0.92) and microbial Hg(II) methylation (kmeth. r=0.65). Sediment biogeochemical responses to de-vegetation were inconsistent between treatments for "reactive Hg" (Hg(II)R), as were reduced sulfur and sulfate reduction rates. Sediment MeHg concentrations in vegetated plots were double those of de-vegetated plots (median=205%), due in part to enhanced microbial MeHg production in the rhizosphere, and in part to rhizoconcentration via transpiration-driven pore-water transport. Pore-water concentrations of chloride, a conservative tracer, were elevated (median=22%) in vegetated plots, suggesting that the higher concentrations of other constituents around roots may also be a function of rhizoconcentration rather than microbial activity alone. Elevated pools of amorphous iron (Fe) in vegetated plots indicate that downward redistribution of oxic surface waters through transpiration acts as a stimulant to Fe(III)-reduction through oxidation of Fe(II)pools. These data suggest that vegetation significantly affected rhizosphere biogeochemistry through organic exudation and transpiration-driven concentration of pore-water constituents and oxidation of reduced compounds. While the relative role of vegetation varied among wetland types, macrophyte activity enhanced MeHg production.


Assuntos
Agricultura , Monitoramento Ambiental , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , California , Sedimentos Geológicos/química , Mercúrio/análise
19.
Sci Total Environ ; 484: 308-18, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23809880

RESUMO

Plants are a dominant biologic and physical component of many wetland capable of influencing the internal pools and fluxes of methylmercury (MeHg). To investigate their role with respect to the latter, we examined the changing seasonal roles of vegetation biomass and Hg, C and N composition from May 2007-February 2008 in 3 types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields), and in adjacent managed natural wetlands dominated by cattail and bulrush (tule). We also determined the impact of vegetation on seasonal microbial Hg methylation rates, and Hg and MeHg export via seasonal storage in vegetation, and biotic consumption of rice seed. Despite a compressed growing season of ~3months, annual net primary productivity (NPP) was greatest in white rice fields and carbon more labile (leaf median C:N ratio=27). Decay of senescent litter (residue) was correlated with microbial MeHg production in winter among all wetlands. As agricultural biomass accumulated from July to August, THg concentrations declined in leaves but MeHg concentrations remained consistent, such that MeHg pools generally increased with growth. Vegetation provided a small, temporary, but significant storage term for MeHg in agricultural fields when compared with hydrologic export. White rice and wild rice seeds reached mean MeHg concentrations of 4.1 and 6.2ng gdw(-1), respectively. In white rice and wild rice fields, seed MeHg concentrations were correlated with root MeHg concentrations (r=0.90, p<0.001), suggesting transport of MeHg to seeds from belowground tissues. Given the proportionally elevated concentrations of MeHg in rice seeds, white and wild rice crops may act as a conduit of MeHg into biota, especially waterfowl which forage heavily on rice seeds within the Central Valley of California, USA. Thus, while plant tissues and rhizosphere soils provide temporary storage for MeHg during the growing season, export of MeHg is enhanced post-harvest through increased hydrologic and biotic export.


Assuntos
Agricultura , Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , California , Metilação , Compostos de Metilmercúrio/análise , Estações do Ano , Áreas Alagadas
20.
Sci Total Environ ; 484: 221-31, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24530187

RESUMO

With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007-2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed - drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay - led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands - slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife - may enhance microbial methylation of Hg(II) and MeHg exposure to local biota, as well as export to downstream habitats during uncontrolled winter-flow events.


Assuntos
Agricultura , Fenômenos Ecológicos e Ambientais , Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , California , Cadeia Alimentar , Hidrologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA