Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 7(21)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34138738

RESUMO

The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here, we study the Kondo semimetal CeRu4Sn6 by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grünesien ratio reveals that, unexpectedly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response throughout the Brillouin zone and the temperature dependence of the static uniform susceptibility, indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, could be generic in the semimetal setting.

2.
Sci Rep ; 5: 17937, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658647

RESUMO

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4Sn6 is a strongly correlated material with non-trivial topology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA