RESUMO
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
RESUMO
Hematopoietic stem cells (HSCs) with superior reconstitution potential are reported to be enriched in the endosteal compared to central bone marrow (BM) region. To investigate whether specific factors at the endosteum may contribute to HSC potency, we screened for candidate HSC niche factors enriched in the endosteal compared to central BM regions. Together with key known HSC supporting factors Kitl and Cxcl12, we report that prostacyclin/prostaglandin I2 (PGI2 ) synthase (Ptgis) was one of the most highly enriched mRNAs (>10-fold) in endosteal compared to central BM. As PGI2 signals through receptors distinct from prostaglandin E2 (PGE2 ), we investigated functional roles for PGI2 at the endosteal niche using therapeutic PGI2 analogs, iloprost, and cicaprost. We found PGI2 analogs strongly reduced HSC differentiation in vitro. Ex vivo iloprost pulse treatment also significantly boosted long-term competitive repopulation (LT-CR) potential of HSCs upon transplantation. This was associated with increased tyrosine-phosphorylation of transducer and activator of transcription-3 (STAT3) signaling in HSCs but not altered cell cycling. In vivo, iloprost administration protected BM HSC potential from radiation or granulocyte colony-stimulating factor-induced exhaustion, and restored HSC homing potential with increased Kitl and Cxcl12 transcription in the BM. In conclusion, we propose that PGI2 is a novel HSC regulator enriched in the endosteum that promotes HSC regenerative potential following stress.
Assuntos
Medula Óssea , Epoprostenol , Epoprostenol/farmacologia , Células-Tronco Hematopoéticas , Iloprosta/farmacologia , Nicho de Células-Tronco/fisiologiaRESUMO
Head-mounted displays are virtual reality devices that may be equipped with sensors and cameras to measure a patient's heart rate through facial regions. Heart rate is an essential body signal that can be used to remotely monitor users in a variety of situations. There is currently no study that predicts heart rate using only highlighted facial regions; thus, an adaptation is required for beats per minute predictions. Likewise, there are no datasets containing only the eye and lower face regions, necessitating the development of a simulation mechanism. This work aims to remotely estimate heart rate from facial regions that can be captured by the cameras of a head-mounted display using state-of-the-art EVM-CNN and Meta-rPPG techniques. We developed a region of interest extractor to simulate a dataset from a head-mounted display device using stabilizer and video magnification techniques. Then, we combined support vector machine and FaceMash to determine the regions of interest and adapted photoplethysmography and beats per minute signal predictions to work with the other techniques. We observed an improvement of 188.88% for the EVM and 55.93% for the Meta-rPPG. In addition, both models were able to predict heart rate using only facial regions as input. Moreover, the adapted technique Meta-rPPG outperformed the original work, whereas the EVM adaptation produced comparable results for the photoplethysmography signal.
Assuntos
Óculos Inteligentes , Realidade Virtual , Humanos , Frequência Cardíaca , Fotopletismografia/métodos , Aprendizado de MáquinaRESUMO
The endothelial adhesion protein E-selectin/CD62E is not required for leukocyte homing, unlike closely related family member P-selectin/CD62P. As transmigration through the endothelium is one of the first steps in generating a local immune response, we hypothesized that E-selectin may play additional roles in the early stages of immune activation. We found contact with E-selectin, but not P-selectin or vascular cell adhesion molecule 1 (CD106), induced phosphorylation of protein kinase B (AKT) and nuclear factor-κB in mouse bone marrow-derived macrophages (BMDMs) in vitro. This occurred within 15 min of E-selectin contact and was dependent on phosphatidylinositol-3 kinase activity. Binding to E-selectin activated downstream proteins including mammalian target of rapamycin, p70 ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1. Functionally, adhesion to E-selectin induced upregulation of CD86 expression and CCL2 secretion. We next asked whether contact with E-selectin impacts further BMDM stimulation. We found enhanced secretion of both interleukin (IL)-10 and CCL2, but not tumor necrosis factor or IL-6 in response to lipopolysaccharide (LPS) stimulation after adhesion to E-selectin. Importantly, adhesion to E-selectin did not polarize BMDMs to one type of response but enhanced both arginase activity and nitric oxide production following IL-4 or LPS stimulation, respectively. In cultured human monocytes, adhesion to E-selectin similarly induced phosphorylation of AKT. Finally, when E-selectin was blocked in vivo in mice, thioglycollate-elicited macrophages showed reduced CD86 expression, validating our in vitro studies. Our results imply functions for E-selectin beyond homing and suggest that E-selectin plays an early role in priming and amplifying innate immune responses.
Assuntos
Selectina E , Proteínas Proto-Oncogênicas c-akt , Animais , Adesão Celular , Células Cultivadas , Endotélio Vascular , Macrófagos , Camundongos , Serina-Treonina Quinases TORRESUMO
Distinct subsets of resident tissue macrophages are important in hematopoietic stem cell niche homeostasis and erythropoiesis. We used a myeloid reporter gene (Csf1r-eGFP) to dissect the persistence of bone marrow and splenic macrophage subsets following lethal irradiation and autologous hematopoietic stem cell transplantation in a mouse model. Multiple recipient bone marrow and splenic macrophage subsets survived after autologous hematopoietic stem cell transplantation with organ-specific persistence kinetics. Short-term persistence (5 weeks) of recipient resident macrophages in spleen paralleled the duration of extramedullary hematopoiesis. In bone marrow, radiation-resistant recipient CD169+ resident macrophages and erythroid-island macrophages self-repopulated long-term after transplantation via autonomous cell division. Posttransplant peak expansion of recipient CD169+ resident macrophage number in bone marrow aligned with the persistent engraftment of phenotypic long-term reconstituting hematopoietic stem cells within bone marrow. Selective depletion of recipient CD169+ macrophages significantly compromised the engraftment of phenotypic long-term reconstituting hematopoietic stem cells and consequently impaired hematopoietic reconstitution. Recipient bone marrow resident macrophages are essential for optimal hematopoietic stem cell transplantation outcomes and could be an important consideration in the development of pretransplant conditioning therapies and/or chemoresistance approaches.
Assuntos
Medula Óssea/metabolismo , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Lesões Experimentais por Radiação/metabolismo , Animais , Autoenxertos , Medula Óssea/patologia , Sobrevivência Celular , Células-Tronco Hematopoéticas/patologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/terapiaRESUMO
Skeletal metastases present a major clinical challenge for prostate cancer patient care, inflicting distinctive mixed osteoblastic and osteolytic lesions that cause morbidity and refractory skeletal complications. Macrophages are abundant in bone and bone marrow and can influence both osteoblast and osteoclast function in physiology and pathology. Herein, we examined the role of macrophages in prostate cancer bone lesions, particularly the osteoblastic response. First, macrophage and lymphocyte distributions were qualitatively assessed in patient's prostate cancer skeletal lesions by immunohistochemistry. Second, macrophage functional contributions to prostate tumour growth in bone were explored using an immune-competent mouse model combined with two independent approaches to achieve in vivo macrophage depletion: liposome encapsulated clodronate that depletes phagocytic cells (including macrophages and osteoclasts); and targeted depletion of CD169(+) macrophages using a suicide gene knock-in model. Immunohistochemistry and histomorphometric analysis were performed to quantitatively assess cancer-induced bone changes. In human bone metastasis specimens, CD68(+) macrophages were consistently located within the tumour mass. Osteal macrophages (osteomacs) were associated with pathological woven bone within the metastatic lesions. In contrast, lymphocytes were inconsistently present in prostate cancer skeletal lesions and when detected, had varied distributions. In the immune-competent mouse model, CD169(+) macrophage ablation significantly inhibited prostate cancer-induced woven bone formation, suggesting that CD169(+) macrophages within pathological woven bone are integral to tumour-induced bone formation. In contrast, pan-phagocytic cell, but not targeted CD169(+) macrophage depletion resulted in increased tumour mass, indicating that CD169(-) macrophage subset(s) and/or osteoclasts influenced tumour growth. In summary, these observations indicate a prominent role for macrophages in prostate cancer bone metastasis that may be therapeutically targetable to reduce the negative skeletal impacts of this malignancy, including tumour-induced bone modelling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Neoplasias Ósseas/secundário , Macrófagos/imunologia , Neoplasias da Próstata/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Osteoblastos/imunologia , Osteoblastos/patologia , Osteoclastos/imunologia , Osteoclastos/patologia , Próstata/imunologia , Próstata/patologia , Neoplasias da Próstata/patologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismoRESUMO
The MYB oncogene is widely expressed in acute leukemias and is important for the continued proliferation of leukemia cells, suggesting that MYB may be a therapeutic target in these diseases. However, realization of this potential requires a significant therapeutic window for MYB inhibition, given its essential role in normal hematopoiesis, and an approach for developing an effective therapeutic. We previously showed that the interaction of c-Myb with the coactivator CBP/p300 is essential for its transforming activity. Here, by using cells from Booreana mice which carry a mutant allele of c-Myb, we show that this interaction is essential for in vitro transformation by the myeloid leukemia oncogenes AML1-ETO, AML1-ETO9a, MLL-ENL, and MLL-AF9. We further show that unlike cells from wild-type mice, Booreana cells transduced with AML1-ETO9a or MLL-AF9 retroviruses fail to generate leukemia upon transplantation into irradiated recipients. Finally, we have begun to explore the molecular mechanisms underlying these observations by gene expression profiling. This identified several genes previously implicated in myeloid leukemogenesis and HSC function as being regulated in a c-Myb-p300-dependent manner. These data highlight the importance of the c-Myb-p300 interaction in myeloid leukemogenesis and suggest disruption of this interaction as a potential therapeutic strategy for acute myeloid leukemia.
Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Alelos , Animais , Transformação Celular Neoplásica , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Mutação , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Neurological heterotopic ossification (NHO) is the abnormal formation of bone in soft tissues as a consequence of spinal cord or traumatic brain injury. NHO causes pain, ankyloses, vascular and nerve compression and delays rehabilitation in this high-morbidity patient group. The pathological mechanisms leading to NHO remain unknown and consequently there are no therapeutic options to prevent or reduce NHO. Genetically modified mouse models of rare genetic forms of heterotopic ossification (HO) exist, but their relevance to NHO is questionable. Consequently, we developed the first model of spinal cord injury (SCI)-induced NHO in genetically unmodified mice. Formation of NHO, measured by micro-computed tomography, required the combination of both SCI and localized muscular inflammation. Our NHO model faithfully reproduced many clinical features of NHO in SCI patients and both human and mouse NHO tissues contained macrophages. Muscle-derived mesenchymal progenitors underwent osteoblast differentiation in vitro in response to serum from NHO mice without additional exogenous osteogenic stimuli. Substance P was identified as a candidate NHO systemic neuropeptide, as it was significantly elevated in the serum of NHO patients. However, antagonism of substance P receptor in our NHO model only modestly reduced the volume of NHO. In contrast, ablation of phagocytic macrophages with clodronate-loaded liposomes reduced the size of NHO by 90%, supporting the conclusion that NHO is highly dependent on inflammation and phagocytic macrophages in soft tissues. Overall, we have developed the first clinically relevant model of NHO and demonstrated that a combined insult of neurological injury and soft tissue inflammation drives NHO pathophysiology.
Assuntos
Macrófagos/fisiologia , Miosite/etiologia , Ossificação Heterotópica/etiologia , Traumatismos da Medula Espinal/complicações , Animais , Cardiotoxinas/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Paraplegia/complicações , Células-Tronco/fisiologiaRESUMO
UNLABELLED: Quiescent hematopoietic stem cells (HSCs) preferentially reside in poorly perfused niches that may be relatively hypoxic. Most of the cellular effects of hypoxia are mediated by O2-labile hypoxia-inducible transcription factors (HIFs). To investigate the effects of hypoxia on HSCs, we blocked O2-dependent HIF-1α degradation in vivo in mice by injecting 2 structurally unrelated prolyl hydroxylase domain (PHD) enzyme inhibitors: dimethyloxalyl glycine and FG-4497. Injection of either of these 2 PHD inhibitors stabilized HIF-1α protein expression in the BM. In vivo stabilization of HIF-1a with these PHD inhibitors increased the proportion of phenotypic HSCs and immature hematopoietic progenitor cells in phase G0 of the cell cycle and decreased their proliferation as measured by 5-bromo-2'-deoxyuridine incorporation. This effect was independent of erythropoietin, the expression of which was increased in response to PHD inhibitors. Finally, pretreatment of mice with a HIF-1α stabilizer before severe, sublethal 9.0-Gy irradiation improved blood recovery and enhanced 89-fold HSC survival in the BM of irradiated mice as measured in long-term competitive repopulation assays. The results of the present study demonstrate that the levels of HIF-1α protein can be manipulated pharmacologically in vivo to increase HSC quiescence and recovery from irradiation. KEY POINTS: HIF-1α protein stabilization increases HSC quiescence in vivo. HIF-1α protein stabilization increases HSC resistance to irradiation and accelerates recovery.
Assuntos
Raios gama/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteólise/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Aminoácidos Dicarboxílicos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Eritropoetina/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos da radiaçãoRESUMO
Stem cells and their malignant counterparts require the support of a specific microenvironment or "niche". While various anti-cancer therapies have been broadly successful, there are growing opportunities to target the environment in which these cells reside to further improve therapeutic efficacy and outcome. This is particularly true when the aim is to target normal or malignant stem cells. The field aiming to target or use the niches that harbor, protect, and support stem cells could be designated as "nichotherapy". In this essay, we provide a few examples of nichotherapies. Some have been employed for decades, such as hematopoietic stem cell mobilization, whereas others are emerging, such as chemosensitization of leukemia stem cells by targeting their niche.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Nicho de Células-Tronco , Animais , Células da Medula Óssea/citologia , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Neoplasias/patologia , Neoplasias/terapiaRESUMO
OBJECTIVE: The anti-leukemic drugs, azathioprine and 6-mercaptopurine (6MP), are important in the treatment of inflammatory bowel disease but an alternative faster-acting, less-allergenic thiopurine, 6-thioguanine (6TG), can cause hepatic veno-occlusive disease/sinusoidal obstructive syndrome (SOS). Understanding of SOS has been hindered by inability to ethically perform serial liver biopsies on patients and the lack of an animal model. DESIGN: Normal and C57Bl/6 mice with specific genes altered to elucidate mechanisms responsible for 6TG-SOS, were gavaged daily for upto 28d with 6TG, 6MP or methylated metabolites. Animal survival was monitored and at sacrifice a histological score of SOS, haematology and liver biochemistry were measured. RESULTS: Only 6TG caused SOS, which was dose related. 6TG and to a lesser extent 6MP but not methylated metabolites were associated with dose-dependent haematopoietic toxicity. SOS was not detected with non-lethal doses of 6TG. SOS did not occur in hypoxanthine-phosphoribosyl transferase-deficient C57Bl/6 mice, demonstrating that 6TG-SOS requires thioguanine nucleotides. Hepatic inflammation was characteristic of SOS, and C57Bl/6 mice deficient in P- and E-selectins on the surface of vascular endothelial cells showed markedly reduced SOS, demonstrating a major role for leukocytes recruited from blood. Split dosing of 6TG markedly attenuated SOS but still effected immunosuppression and prevented spontaneous colitis in Winnie mice, which have a single nucleotide polymorphism mutation in Muc2. CONCLUSION: This novel model provides clinically relevant insights into how 6TG induces SOS, and how this dangerous adverse drug reaction may be avoided by either inhibition of endothelial activation or simple changes to dosing regimens of 6TG, while still being effective treatment for colitis.
Assuntos
Modelos Animais de Doenças , Hepatopatia Veno-Oclusiva/induzido quimicamente , Tioguanina/toxicidade , Animais , Relação Dose-Resposta a Droga , Hepatopatia Veno-Oclusiva/prevenção & controle , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estatísticas não Paramétricas , Análise de Sobrevida , Tioguanina/administração & dosagemRESUMO
Immunodeficient mice bearing human immune systems, or "humanized" chimeric mice, are widely used in basic research, along with the preclinical stages of drug development. Nonobese diabetic-severe combined immunodeficiency (NOD-SCID) IL2Rγnull (NSG) mice expressing human stem cell factor, granulocyte-macrophage colony stimulating factor, and interleukin-3 (NSG-SGM3) support robust development of human myeloid cells and T cells but have reduced longevity due to the development of fatal hemophagocytic lymphohistiocytosis (HLH). Here, we describe an optimized protocol for development of human immune chimerism in NSG-SGM3 mice. We demonstrate that efficient human CD45+ reconstitution can be achieved and HLH delayed by engraftment of neonatal NSG-SGM3 with low numbers of human umbilical cord-derived CD34+ hematopoietic stem cells in the absence of preconditioning irradiation.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfo-Histiocitose Hemofagocítica , Camundongos , Humanos , Animais , Recém-Nascido , Linfo-Histiocitose Hemofagocítica/terapia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Hematopoéticas , Antígenos CD34 , Linfócitos TRESUMO
E-selectin, a cytoadhesive glycoprotein, is expressed on venular endothelial cells and mediates leukocyte localization to inflamed endothelium, the first step in inflammatory cell extravasation into tissue. Constitutive marrow endothelial E-selectin expression also supports bone marrow hematopoiesis via NF-κB-mediated signaling. Correspondingly, E-selectin interaction with E-selectin ligand (sialyl Lewisx) on acute myeloid leukemia (AML) cells leads to chemotherapy resistance in vivo. Uproleselan (GMI-1271) is a carbohydrate analog of sialyl Lewisx that blocks E-selectin binding. A Phase 2 trial of MEC chemotherapy combined with uproleselan for relapsed/refractory AML showed a median overall survival of 8.8 months and low (2%) rates of severe oral mucositis. Clinical trials seek to confirm activity in AML and mitigation of neutrophil-mediated adverse events (mucositis and diarrhea) after intensive chemotherapy. In this review we summarize E-selectin biology and the rationale for uproleselan in combination with other therapies for hematologic malignancies. We also describe uproleselan pharmacology and ongoing clinical trials.
Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Medula Óssea/patologia , Selectina E/antagonistas & inibidores , Selectina E/metabolismo , Células Endoteliais/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologiaRESUMO
Osteoblasts are necessary to B lymphopoiesis and mobilizing doses of G-CSF or cyclophosphamide inhibit osteoblasts, whereas AMD3100/Plerixafor does not. However, the effect of these mobilizing agents on B lymphopoiesis has not been reported. Mice (wild-type, knocked-out for TNF-α and TRAIL, or over-expressing Bcl-2) were mobilized with G-CSF, cyclophosphamide, or AMD3100. Bone marrow, blood, spleen and lymph node content in B cells was measured. G-CSF stopped medullar B lymphopoiesis with concomitant loss of B-cell colony-forming units, pre-pro-B, pro-B, pre-B and mature B cells and increased B-cell apoptosis by an indirect mechanism. Overexpression of the anti-apoptotic protein Bcl2 in transgenic mice rescued B-cell colony forming units and pre-pro-B cells in the marrow, and prevented loss of all B cells in marrow, blood and spleen. Blockade of endogenous soluble TNF-α with Etanercept, or combined deletion of the TNF-α and TRAIL genes did not prevent B lymphopoiesis arrest in response to G-CSF. Unlike G-CSF, treatments with cyclophosphamide or AMD3100 did not suppress B lymphopoiesis but caused instead robust B-cell mobilization. G-CSF, cyclophosphamide and AMD3100 have distinct effects on B lymphopoiesis and B-cell mobilization with: 1) G-CSF inhibiting medullar B lymphopoiesis without mobilizing B cells in a mechanism distinct from the TNF-α-mediated loss of B lymphopoiesis observed during inflammation or viral infections; 2) CYP mobilizing B cells but blocking their maturation; and 3) AMD3100 mobilizing B cells without affecting B lymphopoiesis. These results suggest that blood mobilized with these three agents may have distinct immune properties.
Assuntos
Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Mobilização de Células-Tronco Hematopoéticas , Linfopoese/efeitos dos fármacos , Linfopoese/genética , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/metabolismo , Benzilaminas , Medula Óssea/efeitos dos fármacos , Ciclamos , Ciclofosfamida/farmacologia , Compostos Heterocíclicos/farmacologia , Masculino , Camundongos , Baço/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
The erythroblastic island (EBI) is a multicellular functional erythropoietic unit comprising a central macrophage nurturing a rosette of maturing erythroblasts. Since the discovery of EBIs more than half a century ago, EBIs are still studied by traditional microscopy methods after enrichment by sedimentation. These isolation methods are not quantitative and do not enable precise quantification of EBI numbers or frequency in the bone marrow or spleen tissues. Conventional flow cytometric methods have enabled quantification of cell aggregates co-expressing macrophage and erythroblast markers; however, it is unknown whether these aggregates contain EBIs as these aggregates cannot be visually assessed for EBI content. Combining the strengths of both microscopy and flow cytometry methods, in this chapter we describe an imaging flow cytometry method to analyze and quantitatively measure EBIs from the mouse bone marrow. This method is adaptable to other tissues such as the spleen or to other species provided that fluorescent antibodies specific to macrophages and erythroblasts are available.
Assuntos
Medula Óssea , Eritroblastos , Camundongos , Animais , Citometria de Fluxo , Macrófagos , EritropoeseRESUMO
Aphasia is a language disorder that occurs after brain injury and directly affects an individual's communication. The incidence of stroke increases with age, and one-third of people who have had a stroke develop aphasia. The severity of aphasia changes over time and some aspects of language may improve, while others remain compromised. Battery task training strategies are used in the rehabilitation of aphasics. The idea of this research is to use electroencephalography (EEG) as a non-invasive method, of electrophysiological monitoring, with a group of aphasic patients in rehabilitation process in a prevention and rehabilitation unit of the person with disabilities of the Unified Health System (SUS), of reference in the state of Bahia-Brazil. In this study, the goal is to analyze brain activation and wave frequencies of aphasic individuals during a sentence completion task, to possibly assist health professionals with the analysis of the aphasic subject's rehabilitation and task redefinition. We adopted the functional magnetic resonance imaging (fMRI) paradigm, proposed by the American Society for Functional Neuroradiology as a reference paradigm. We applied the paradigm in the group of aphasics with preserved comprehension, right hemiparesis, and left hemisphere injured or affected by stroke. We analyzed four electrodes (F3/F4 and F7/F8) corresponding to the left/right frontal cortex. Preliminary results of this study indicate a more robust activation in the right hemisphere (average of aphasics), with a difference of approximately 14% higher in Theta and Alpha frequencies, with 8% higher in low Beta (BetaL) and with approximately 1% higher in high Beta frequency (BetaH), Gamma frequency was higher by approximately 3% in the left hemisphere of the brain. The difference in electrical activation may be revealing to us a migration of language to the non-language dominant hemisphere. We point to possible evidence suggesting that EEG may be a promising tool for monitoring the rehabilitation of the aphasic subject.
Assuntos
Afasia , Acidente Vascular Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Afasia/etiologia , Acidente Vascular Cerebral/complicações , Idioma , Eletroencefalografia/efeitos adversosRESUMO
Public health emergencies are extraordinary events of disease spread, with health, economic, and social consequences, which require coordinated actions by governments and society. This work aims to analyze scopes, application possibilities, challenges, and gaps of decision support frameworks in PHE management, using the components of the Health Emergency and Disaster Risk Management Framework (H-EDRM) and the Preparedness, Prevention, Response and Recovery Model (PPRR Model), providing guidelines for the development of new models. A systematic literature review was carried out using the Web of Science, Scopus, and Pubmed knowledge databases on studies published between 2016 and 2023, and thirty-six articles were selected. The outcomes show a concentration of frameworks on short-term emergency response operations, with a limited emphasis on the political and strategic components that drive actors and responsibilities. Management prioritizes monitoring, evaluation, and information management frameworks. However, the models need to overcome the challenges of multisectoral and interdisciplinary action, different levels of decisions and actors, data sharing, and development of common platforms of evidence for decisions fitted to the various emergencies.
Assuntos
Desastres , Emergências , Humanos , Saúde Pública , Bases de Dados Factuais , GovernoRESUMO
Knowledge translation (KT) aims at the practical use of scientific research results and at the monitoring of the benefits caused to the population's health. In health, the government and especially society expect that investments in research will produce results that go beyond the production and publication of knowledge, provoking outcomes such as public policies, systems, products, and technologies to benefit the health of the population. However, closing the gaps between research and application requires overcoming a number of challenges. This study aimed to propose strategies to foster the process of transforming the scientific knowledge generated in research into actions and products that contribute to improving the population's health based on the identification of barriers and facilitating factors of a health science and technology institute. The reports of interviews conducted with 16 researchers showed 10 categories of barriers, especially: "limited funding to the science and technology institute" and "insufficient technical support for knowledge translation". "Infrastructure and institutional support" was the facilitating factor category participants mentioned the most. Finally, we developed the artifact "strategies and approaches for overcoming barriers to implement research results". Among the strategies, we suggest the inclusion of a knowledge translation discipline in stricto sensu graduate programs and the creation of an instance in the organizational structure of the science and technology institute to technically and managerially support the application of research results.
A translação do conhecimento (TC) tem como propósito a utilização prática dos resultados de pesquisas científicas e o monitoramento dos benefícios causados à saúde da população. Na área de saúde, o governo e, principalmente, a sociedade esperam que os investimentos em pesquisas obtenham resultados que vão além da produção e da publicação do conhecimento, e provoquem soluções como políticas públicas, sistemas, produtos e tecnologias para beneficiar a saúde da população. Contudo, verifica-se ainda a necessidade de superar diversos desafios para eliminar as lacunas existentes entre a investigação e a aplicação. O objetivo deste estudo é propor estratégias, com base na identificação de barreiras e fatores facilitadores de um instituto de ciência e tecnologia (ICT) em saúde, para fomentar o processo de transformação do conhecimento científico, gerado nas pesquisas, em ações e produtos que contribuam para a melhoria da saúde da população. Os relatos das entrevistas, realizadas com 16 pesquisadores, permitiram a identificação de 10 categorias de barreiras, tendo destaque: "financiamento em ciência, tecnologia e informação (CT&I) limitado" e "apoio técnico insuficiente para a translação do conhecimento". "Infraestrutura e apoio institucional" foi a categoria de fatores facilitadores mais citada pelos participantes. Por fim, foi desenvolvido o artefato "estratégias e abordagens para superação de barreiras à implementação de resultados de pesquisa". Entre as estratégias, sugere-se a inclusão de uma disciplina de TC nos programas de pós-graduação stricto sensu e a criação de uma instância na estrutura organizacional do ICT voltada à prestação de suporte técnico e gerencial à aplicação de resultados de pesquisa.
La traslación del conocimiento (TC) tiene como propósito el uso práctico de los resultados de investigaciones científicas y el seguimiento de los beneficios causados a la salud de la población. En el área de la salud, el gobierno y, sobre todo, la sociedad esperan que las inversiones en investigaciones obtengan resultados que vayan más allá de la producción y publicación de conocimiento, y provoquen resultados, como políticas públicas, sistemas, productos y tecnologías en beneficio de la salud de la población. Sin embargo, se observa aun la necesidad de superar diversos desafíos para eliminar las brechas entre la investigación y la aplicación. El objetivo de este estudio es proponer estrategias con base en la identificación de barreras y factores facilitadores de un instituto de ciencia y tecnología (ICT) en salud, para fomentar el proceso de transformación del conocimiento científico generado en las investigaciones en acciones y productos que contribuyan a mejorar la salud de la población. Los relatos de las entrevistas a 16 investigadores permitieron identificar 10 categorías de barreras, con énfasis en: "financiación en CT&I limitado" y "apoyo técnico insuficiente para la traslación del conocimiento". "Infraestructura y apoyo institucional" fue la categoría de factores facilitadores más citada por los participantes. Finalmente, se desarrolló el artefacto "estrategias y enfoques para la superación de barreras a la implementación de resultados de investigación". Entre las estrategias, se sugiere la inclusión de una asignatura de TC en los programas de posgrado stricto sensu y la creación de una instancia en la estructura organizacional del ICT orientada a brindar apoyo técnico y gerencial a la aplicación de los resultados de la investigación.
Assuntos
Saúde Pública , Ciência Translacional Biomédica , Humanos , BrasilRESUMO
Neurogenic heterotopic ossifications (NHO) are heterotopic bones that develop in periarticular muscles after severe central nervous system (CNS) injuries. Several retrospective studies have shown that NHO prevalence is higher in patients who suffer concomitant infections. However, it is unclear whether these infections directly contribute to NHO development or reflect the immunodepression observed in patients with CNS injury. Using our mouse model of NHO induced by spinal cord injury (SCI) between vertebrae T11 to T13 , we demonstrate that lipopolysaccharides (LPS) from gram-negative bacteria exacerbate NHO development in a toll-like receptor-4 (TLR4)-dependent manner, signaling through the TIR-domain-containing adapter-inducing interferon-ß (TRIF/TICAM1) adaptor rather than the myeloid differentiation primary response-88 (MYD88) adaptor. We find that T11 to T13 SCI did not significantly alter intestinal integrity nor cause intestinal bacteria translocation or endotoxemia, suggesting that NHO development is not driven by endotoxins from the gut in this model of SCI-induced NHO. Relevant to the human pathology, LPS increased expression of osteoblast markers in cultures of human fibro-adipogenic progenitors isolated from muscles surrounding NHO biopsies. In a case-control retrospective study in patients with traumatic brain injuries, infections with gram-negative Pseudomonas species were significantly associated with NHO development. Together these data suggest a functional association between gram-negative bacterial infections and NHO development and highlights infection management as a key consideration to avoid NHO development in patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Assuntos
Ossificação Heterotópica , Traumatismos da Medula Espinal , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Estudos Retrospectivos , Traumatismos da Medula Espinal/complicações , Ossificação Heterotópica/patologia , Bactérias , MineraisRESUMO
Hematopoietic stem cell (HSC) niches have been reported at the endosteum or adjacent to bone marrow (BM) vasculature. To investigate functional attributes of these niches, mice were perfused with Hoechst 33342 (Ho) in vivo before BM cell collection in presence of pump inhibitors and antibody stained. We report that the position of phenotypic HSCs, multipotent and myeloid progenitors relative to blood flow, follows a hierarchy reflecting differentiation stage, whereas mesenchymal stromal cells are perivascular. Furthermore, during granulocyte colony-stimulating factor-induced mobilization, HSCs migrated closer to blood flow, whereas stromal cells did not. Interestingly, phenotypic Lin(-)Sca1(+)KIT(+)CD41(-)CD48(-)CD150(+) HSCs segregated into 2 groups (Ho(neg) or Ho(med)), based on degree of blood/Ho perfusion of their niche. HSCs capable of serial transplantation and long-term bromodeoxyuridine label retention were enriched in Ho(neg) HSCs, whereas Ho(med) HSCs cycled more frequently and only reconstituted a single host. This suggests that the most potent HSC niches are enriched in locally secreted factors and low oxygen tension due to negligible blood flow. Importantly, blood perfusion of niches correlates better with HSC function than absolute distance from vasculature. This technique enables prospective isolation of serially reconstituting HSCs distinct from other less potent HSCs of the same phenotype, based on the in vivo niche in which they reside.