Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Sci ; 136(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36825945

RESUMO

Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are an early event in Alzheimer's disease (AD) pathogenesis. However, the mechanisms underlying these abnormalities are unclear. The transient receptor potential channel mucolipin 1(TRPML1, also known as MCOLN1), a vital endosomal-lysosomal Ca2+ channel whose loss of function leads to neurodegeneration, has not been investigated with respect to EAL pathogenesis in late-onset AD (LOAD). Here, we identify pathological hallmarks of TRPML1 dysregulation in LOAD neurons, including increased perinuclear clustering and vacuolation of endolysosomes. We reveal that induced pluripotent stem cell (iPSC)-derived human cortical neurons expressing APOE ε4, the strongest genetic risk factor for LOAD, have significantly diminished TRPML1-induced endolysosomal Ca2+ release. Furthermore, we found that blocking TRPML1 function in primary neurons by depleting the TRPML1 agonist PI(3,5)P2 via PIKfyve inhibition, recreated multiple features of EAL neuropathology evident in LOAD. This included increased endolysosomal Ca2+ content, enlargement and perinuclear clustering of endolysosomes, autophagic vesicle accumulation and early endosomal enlargement. Strikingly, these AD-like neuronal EAL defects were rescued by TRPML1 reactivation using its synthetic agonist ML-SA1. These findings implicate defects in TRPML1 in LOAD EAL pathogenesis and present TRPML1 as a potential therapeutic target.


Assuntos
Doença de Alzheimer , Canais de Potencial de Receptor Transitório , Humanos , Cálcio/metabolismo , Doença de Alzheimer/patologia , Canais de Potencial de Receptor Transitório/genética , Lisossomos/metabolismo , Autofagia
2.
Hum Genomics ; 9: 3, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884485

RESUMO

BACKGROUND: Neurofibromatosis type-1 (NF1) is a complex neurogenetic disorder characterised by the development of benign and malignant tumours of the peripheral nerve sheath (MPNSTs). Whilst biallelic NF1 gene inactivation contributes to benign tumour formation, additional cellular changes in gene structure and/or expression are required to induce malignant transformation. Although few molecular profiling studies have been performed on the process of progression of pre-existing plexiform neurofibromas to MPNSTs, the integrated analysis of copy number alterations (CNAs) and gene expression is likely to be key to understanding the molecular mechanisms underlying NF1-MPNST tumorigenesis. In a pilot study, we employed this approach to identify genes differentially expressed between benign and malignant NF1 tumours. RESULTS: SPP1 (osteopontin) was the most differentially expressed gene (85-fold increase in expression), compared to benign plexiform neurofibromas. Short hairpin RNA (shRNA) knockdown of SPP1 in NF1-MPNST cells reduced tumour spheroid size, wound healing and invasion in four different MPNST cell lines. Seventy-six genes were found to exhibit concordance between CNA and gene expression level. CONCLUSIONS: Pathway analysis of these genes suggested that glutathione metabolism and Wnt signalling may be specifically involved in NF1-MPNST development. SPP1 is associated with malignant transformation in NF1-associated MPNSTs and could prove to be an important target for therapeutic intervention.


Assuntos
Variações do Número de Cópias de DNA/genética , Neoplasias de Bainha Neural/genética , Neurofibromatose 1/genética , Osteopontina/biossíntese , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias de Bainha Neural/complicações , Neurofibromatose 1/complicações , Osteopontina/genética
3.
Hum Genomics ; 9: 25, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446085

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers. RESULTS: We identified two regions, located respectively ~14 and ~85 kb upstream of the SMCHD1 gene, which were then sequenced in 229 FSHD/FSHD-like patients (200 with D4Z4 repeat units <11). Three heterozygous sequence variants were found ~14 kb upstream of the SMCHD1 gene. One of these variants was found to be of potential functional significance based on DNA methylation analysis. Further functional ascertainment will be required in order to establish the clinical/functional significance of the variants found. CONCLUSIONS: In this study, we propose an improved approach to predict the possible locations of remotely acting regulatory elements that might influence the transcriptional regulation of their associated gene(s). It represents a new way to screen for disease-relevant mutations beyond the immediate vicinity of the specific disease gene. It promises to be useful for investigating disorders in which mutations could occur in remotely acting regulatory elements.


Assuntos
Proteínas Cromossômicas não Histona/genética , Metilação de DNA/genética , Distrofia Muscular Facioescapuloumeral/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Bases , Simulação por Computador , Epigênese Genética , Feminino , Humanos , Masculino , Distrofia Muscular Facioescapuloumeral/patologia , Mutação/genética , Linhagem
4.
AMRC Open Res ; 2: 21, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32490352

RESUMO

Good's buffers are commonly used for cell culture and, although developed to have minimal to no biological impact, they cause alterations in cellular processes such as autophagy and lysosomal enzyme activity. Using Chinese hamster ovary cells and induced pluripotent stem cell-derived neurons, this study explores the effect of zwitterionic buffers, specifically HEPES, on lysosomal volume and Ca2+ levels. Certain zwitterionic buffers lead to lysosomal expansion and reduced lysosomal Ca2+. Care should be taken when selecting buffers for growth media to avoid detrimental impacts on lysosomal function.

5.
Eur J Hum Genet ; 23(1): 67-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24755953

RESUMO

Facioscapulohumeral muscular dystrophy 1 (FSHD1) is caused by a contraction in the number of D4Z4 repeats on chromosome 4, resulting in relaxation of D4Z4 chromatin causing inappropriate expression of DUX4 in skeletal muscle. Clinical severity is inversely related to the number of repeats. In contrast, FSHD2 patients also have inappropriate expression of DUX4 in skeletal muscle, but due to constitutional mutations in SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1), which cause global hypomethylation and hence general relaxation of chromatin. Thirty patients originally referred for FSHD testing were screened for SMCHD1 mutations. Twenty-nine had >11 D4Z4 repeats. SMCHD1 c.1040+1G>A, a pathogenic splice-site variant, was identified in a FSHD1 family with a borderline number of D4Z4 repeats (10) and a variable phenotype (in which a LMNA1 sequence variant was previously described), and SMCHD1 c.2606 G>T, a putative missense variant (p.Gly869Val) with strong in vitro indications of pathogenicity, was identified in a family with an unusual muscular dystrophy with some FSHD-like features. The two families described here emphasise the genetic complexity of muscular dystrophies. As SMCHD1 has a wider role in global genomic methylation, the possibility exists that it could be involved in other complex undiagnosed muscle disorders. Thus far, only 15 constitutional mutations have been identified in SMCHD1, and these two sequence variants add to the molecular and phenotypic spectrum associated with FSHD.


Assuntos
Proteínas Cromossômicas não Histona/genética , Variação Genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/química , Metilação de DNA , Análise Mutacional de DNA , Fácies , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Alinhamento de Sequência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA