RESUMO
BACKGROUND: No human rabies post-exposure prophylaxis (PEP) failure has been documented in the United States using modern cell culture-based vaccines. In January 2021, an 84-year-old male died from rabies 6 months after being bitten by a rabid bat despite receiving timely rabies PEP. We investigated the cause of breakthrough infection. METHODS: We reviewed medical records, laboratory results, and autopsy findings and performed whole-genome sequencing (WGS) to compare patient and bat virus sequences. Storage, administration, and integrity of PEP biologics administered to the patient were assessed; samples from leftover rabies immunoglobulin were evaluated for potency. We conducted risk assessments for persons potentially exposed to the bat and for close patient contacts. RESULTS: Rabies virus antibodies present in serum and cerebrospinal fluid were nonneutralizing. Antemortem blood testing revealed that the patient had unrecognized monoclonal gammopathy of unknown significance. Autopsy findings showed rabies meningoencephalitis and metastatic prostatic adenocarcinoma. Rabies virus sequences from the patient and the offending bat were identical by WGS. No deviations were identified in potency, quality control, administration, or storage of administered PEP. Of 332 persons assessed for potential rabies exposure to the case patient, 3 (0.9%) warranted PEP. CONCLUSIONS: This is the first reported failure of rabies PEP in the Western Hemisphere using a cell culture-based vaccine. Host-mediated primary vaccine failure attributed to previously unrecognized impaired immunity is the most likely explanation for this breakthrough infection. Clinicians should consider measuring rabies neutralizing antibody titers after completion of PEP if there is any suspicion for immunocompromise.
Assuntos
Vacina Antirrábica , Raiva , Masculino , Humanos , Idoso de 80 Anos ou mais , Raiva/prevenção & controle , Minnesota , Profilaxia Pós-Exposição/métodos , Anticorpos AntiviraisRESUMO
PURPOSE: Genetic variants may influence the pharmacokinetics and pharmacodynamics (PKPD) of cyclophosphamide (CY). CY plays a critical role in conditioning chemotherapy for hematopoietic cell transplantation (HCT), but its use is limited by toxicity. We explored the effect of genetic variants, potentially affecting PKPD of CY, and outcomes after HCT. METHODS: This observational pharmacogenomic study included 85 adults with hematologic malignancies who received reduced intensity conditioning with CY, fludarabine, and total body irradiation. We collected recipient DNA prior to HCT and evaluated 97 candidate variants in 66 genes and 3 metabolism phenotypes potentially involved in PKPD pathways of CY. In multivariable analysis we investigated the association between the genotypes and four clinical outcomes: Day 180 non-relapse mortality (NRM) and day 180 overall survival (OS), acute graft-versus-host-disease (aGVHD) grades 2-4, and engraftment. p values were not adjusted for multiple testing. RESULTS: The median recipient age was 63 years (range 21-75). Acute myeloid leukemia was the most common diagnosis (34%; n = 29). In multivariable analysis adjusted for exposure to phosphoramide mustard, the final active metabolite of CY, we identified 6 variants in 6 genes associated with at least one of the clinical outcomes. An ABCC4 variant (rs9561778) was associated with poor Day 180 NRM (p < 0.01), MUTYH variant (rs3219484) with higher Day 180 NRM and aGVHD (both p < 0.01), and SYNE1 variant (rs4331993) with better Day 180 OS and engraftment (both p ≤ 0.01). CONCLUSION: The present study suggests that genetic variants influencing the PKPD of CY may help identify patients at risk for inferior outcomes after HCT using CY-based reduced-intensity conditioning.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Ciclofosfamida/uso terapêutico , Humanos , Condicionamento Pré-Transplante , Irradiação Corporal TotalRESUMO
Reduced-intensity conditioning regimens using fludarabine (Flu) and cyclophosphamide (Cy) have been widely used in hematopoietic cell transplantation (HCT) recipients. The optimal exposure of these agents remains to be determined. We aimed to delineate the exposure-outcome associations of Flu and Cy separately and then both combined on HCT outcomes. This is a single-center, observational, pharmacokinetic (PK)-pharmacodynamic (PD) study of Flu and Cy in HCT recipients age ≥18 years who received Cy (50 mg/kg in a single dose), Flu (150 to 200 mg/m2 given as 5 daily doses), and total body irradiation (TBI; 200 cGy). We measured trough concentrations of 9-ß-D-arabinosyl-2-fluoradenine (F-ara-A), an active metabolite of Flu, on days -5 and -4 (F-ara-ADay-5 and F-ara-ADay-4, respectively), and measured phosphoramide mustard (PM), the final active metabolite of Cy, and estimated the area under the curve (AUC). The 89 enrolled patients had a nonrelapse mortality (NRM) of 9% (95% confidence interval [CI], 3% to 15%) at day +100 and 15% (95% CI, 7% to 22%) at day +180, and an overall survival (OS) of 73% (95% CI, 63% to 81%) at day +180. In multivariate analysis, higher PM area under the curve (AUC) for 0 to 8 hours (PM AUC0-8 hr) was an independent predictor of worse NRM (P < .01 at both day +100 and day +180) and worse day +180 OS (P < .01), but no associations were identified for F-ara-A trough levels. We observed lower day +100 NRM in those with both high F-ara-ADay-4 trough levels (≥40 ng/mL; >25th percentile) and low PM AUC0-8 hr (<34,235 hr ng/mL; <75th percentile), compared with high exposures to both agents (hazard ratio, 0.06; 95% CI, 0.01 to 0.48). No patients with low F-ara-ADay-4 (<40 ng/mL; <25th percentile) had NRM by day +100, regardless of PM AUC. The interpatient PK variability was large in F-ara-ADay-4 trough and PM AUC0-8 hr (29-fold and 5.0-fold, respectively). Flu exposure alone was not strongly associated with NRM or OS in this reduced Flu dose regimen; however, high exposure to both Flu and Cy was associated with a >16-fold higher NRM. These results warrant further investigation to optimize reduced-intensity regimens based on better PK-PD understanding and possible adaptation to predictable factors influencing drug clearance.
Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Adolescente , Adulto , Ciclofosfamida , Neoplasias Hematológicas/terapia , Humanos , Vidarabina/análogos & derivadosRESUMO
Patients undergoing hematopoietic cell transplantation (HCT) with reduced intensity conditioning (RIC) commonly receive fludarabine. Higher exposure of F-ara-A, the active component of fludarabine, has been associated with a greater risk of nonrelapse mortality (NRM). We sought to develop a model for fludarabine dosing in adult HCT recipients that would allow for precise dose targeting and predict adverse clinical outcomes. We developed a pharmacokinetic model from 87 adults undergoing allogeneic RIC HCT that predicts F-ara-A population clearance (Clpop) accounting for ideal body weight and renal function. We then applied the developed model to an independent cohort of 240 patients to identify whether model predictions were associated with NRM and acute graft versus host disease (GVHD). Renal mechanisms accounted for 35.6% of total F-ara-A Clpop. In the independent cohort, the hazard ratio of NRM at day 100 was significantly higher in patients with predicted F-ara-A clearance (Clpred) <8.50 L/h (P < 0.01) and area under the curve (AUCpred) >6.00 µg × h/mL (P = 0.01). A lower Clpred was also associated with more NRM at month 6 (P = 0.01) and trended toward significance at 12 months (P = 0.05). In multivariate analysis, low fludarabine clearance trended toward higher risk of acute GVHD (P = 0.05). We developed a model that predicts an individual's systemic F-ara-A exposure accounting for kidney function and weight. This model may provide guidance in dosing especially in overweight individuals and those with altered kidney function.