Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadk4423, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536911

RESUMO

DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.


Assuntos
Neoplasias do Colo , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histonas/metabolismo , Metilação , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
2.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405904

RESUMO

The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.

3.
Commun Biol ; 5(1): 528, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654826

RESUMO

The DNA methylation status of the X-chromosome in cancer cells is often overlooked because of computational difficulties. Most of the CpG islands on the X-chromosome are mono-allelically methylated in normal female cells and only present as a single copy in male cells. We treated two colorectal cancer cell lines from a male (HCT116) and a female (RKO) with increasing doses of a DNA methyltransferase 1 (DNMT1)-specific inhibitor (GSK3685032/GSK5032) over several months to remove as much non-essential CpG methylation as possible. Profiling of the remaining DNA methylome revealed an unexpected, enriched retention of DNA methylation on the X-chromosome. Strikingly, the identified retained X-chromosome DNA methylation patterns accurately predicted de novo DNA hypermethylation in colon cancer patient methylomes in the TCGA COAD/READ cohort. These results suggest that a re-examination of tumors for X-linked DNA methylation changes may enable greater understanding of the importance of epigenetic silencing of cancer related genes.


Assuntos
Metilação de DNA , Neoplasias , Ilhas de CpG , DNA , Feminino , Humanos , Masculino , Neoplasias/genética , Cromossomo X
4.
Cell Genom ; 2(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35873672

RESUMO

We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.

5.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34790902

RESUMO

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Animais , Azacitidina/farmacologia , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Decitabina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA