Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(3): 312-326, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236260

RESUMO

ConspectusDue to the rarity of precious metals like palladium, nickel catalysis is becoming an increasingly important player in organic synthesis, especially for the formation of bonds with sp3-hybridized carbon centers. Traditionally, catalytic processes involving active Ni(0) species have relied on Ni(COD)2 or in situ reduction of Ni(II) salts. However, Ni(COD)2 is an air- and temperature-sensitive material that requires use in an inert-atmosphere glovebox, and in situ reduction protocols of Ni(II) salts using metallic or organometallic reductants add additional complications to reaction development.This Account chronicles the development of air-stable Ni(0) precursors as replacements for Ni(COD)2 or in situ reduction. Based on Schrauzer's seminal discovery of Ni(COD)(DQ) as an air-stable zerovalent organonickel complex, our research laboratories at Scripps Research and Bristol Myers Squibb have developed a class of precatalysts based on the Ni(COD)(EDD) (EDD = electron-deficient diene) framework, relying on the steric and electronic properties of the supporting diene to render the metal center stable to air, moisture, and even silica gel but reactive to ligand substitution and redox changes.The stable Ni(0) complexes can be accessed through ligand exchange with Ni(COD)2, through reduction of Ni(acac)2 using DIBAL-H, or electrochemically via cathodic reduction of Ni(acac)2 to Ni(COD)2, followed by addition of an EDD ligand in one pot. As a toolkit, the complexes demonstrate reactivity that is equivalent or enhanced compared to Ni(COD)2, catalyzing C-C and C-N cross-couplings, Miyaura borylations, C-H activations, and other transformations. Since the initial report on Ni(COD)(DQ), its reactivity in C(sp2)-CN activation, metallophotoredox, and electric field-induced cross-coupling have also been demonstrated.By incorporating the precatalyst toolkit into reaction discovery campaigns, our laboratories have been able to perform C(sp3)-S(alkyl) couplings and metallonitrenoid carboamination, both of which represent challenging transformations that were inaccessible with traditional phosphine, nitrogen, or electron-deficient olefin ligands. Computational and experimental studies demonstrate how the quinone ligands are hemilabile, adopting η1(O)-bound geometries to relieve steric strain or stabilize transition states and intermediates; redox-active, able to transiently oxidize the metal center; and electron-withdrawing or -donating, depending on metal oxidation state and coordination geometry. These studies show how the ligands enable key steps in catalysis beyond imparting air-stability.Since our report documenting the catalytic activity of Ni(COD)(DQ), many other laboratories have also observed unique reactivity with this precatalyst. Ni(COD)(DQ) was found to offer superior reactivity to Ni(COD)2 in C-N cross coupling to form N,N-diaryl sulfonamides and in preparation of biaryls from aryl halides and benzene through a Ni-mediated, base-assisted homolytic aromatic substitution.

2.
J Am Chem Soc ; 146(14): 10124-10141, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557045

RESUMO

Phenoxyimine (FI)-nickel(II)(2-tolyl)(DMAP) compounds were synthesized and evaluated as precatalysts for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of (hetero)arylboronic acids with alkyl bromides. With 5 mol % of the optimal (MeOMeFI)Ni(Aryl)(DMAP) precatalyst, the scope of the cross-coupling reaction was established and included a variety of (hetero)arylboronic acids and alkyl bromides (>50 examples, 33-97% yield). A ß-hydride elimination-reductive elimination sequence from reaction with potassium isopropoxide base, yielding a potassium (FI)nickel(0)ate, was identified as a catalyst activation pathway that is responsible for halogen atom abstraction from the alkyl bromide. A combination of NMR and EPR spectroscopies identified (FI)nickel(II)-aryl complexes as the resting state during catalysis with no evidence for long-lived organic radical or odd-electron nickel intermediates. These data establish that the radical chain is short-lived and undergoes facile termination and also support a "recovering radical chain" process whereby the (FI)nickel(II)-aryl compound continually (re)initiates the radical chain. Kinetic studies established that the rate of C(sp2)-C(sp3) product formation was proportional to the concentration of the (FI)nickel(II)-aryl resting state that captures the alkyl radical for chain propagation. The proposed mechanism involves two key and concurrently operating catalytic cycles; the first involving a nickel(I/II/III) radical propagation cycle consisting of radical capture at (FI)nickel(II)-aryl, C(sp2)-C(sp3) reductive elimination, bromine atom abstraction from C(sp3)-Br, and transmetalation; and the second involving an off-cycle catalyst recovery process by slow (FI)nickel(II)-aryl → (FI)nickel(0)ate conversion for nickel(I) regeneration.

3.
Childs Nerv Syst ; 40(8): 2491-2495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717604

RESUMO

PURPOSE: To assess preferences and outcome expectations for vagus nerve stimulation (VNS) and corpus callosotomy (CC) surgeries in the treatment of atonic seizure in Lennox-Gastaut syndrome (LGS). METHODS: A total of 260 surveys were collected from patients are caregivers of LGS patients via Research Electronic Data Capture (REDCap). RESULTS: Respondents reported an average acceptable atonic seizure reduction rate of 55.9% following VNS and 74.7% following CC. 21.3% (n = 50) were willing to be randomized. Respondents reported low willingness for randomization and a higher seizure reduction expectation with CC. CONCLUSION: Our findings guide surgical approaches for clinicians to consider patient preference in order to design future studies comparing effectiveness between these two procedures.


Assuntos
Síndrome de Lennox-Gastaut , Preferência do Paciente , Estimulação do Nervo Vago , Humanos , Síndrome de Lennox-Gastaut/cirurgia , Feminino , Masculino , Criança , Estimulação do Nervo Vago/métodos , Adolescente , Preferência do Paciente/psicologia , Pré-Escolar , Corpo Caloso/cirurgia , Inquéritos e Questionários , Convulsões/cirurgia , Convulsões/psicologia , Adulto Jovem , Procedimentos Neurocirúrgicos/métodos , Resultado do Tratamento , Adulto , Lactente
4.
Angew Chem Int Ed Engl ; 63(2): e202311557, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37984444

RESUMO

Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2 ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.

5.
J Am Chem Soc ; 145(46): 25293-25303, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938051

RESUMO

Catalytic carboamination of alkenes is a powerful synthetic tool to access valuable amine scaffolds from abundant and readily available alkenes. Although a number of synthetic approaches have been developed to achieve the rapid buildup of molecular complexity in this realm, the installation of diverse carbon and nitrogen functionalities onto unactivated alkenes remains underdeveloped. Here we present a ligand design approach to enable nickel-catalyzed three-component carboamidation that is applicable to a wide range of alkenyl amine derivatives via a tandem process involving alkyl migratory insertion and inner-sphere metal-nitrenoid transfer. With this method, various nitrogen functionalities can be installed into both internal and terminal unactivated alkenes, leading to differentially substituted diamines that would otherwise be difficult to access. Mechanistic investigations reveal that the tailored Ni(cod)(BQiPr) precatalyst modulates the electronic properties of the presumed π-alkene-nickel intermediate via the quinone ligand, leading to enhanced carbonickelation efficiency across the unactivated C═C bond. These findings establish nickel's ability to catalyze multicomponent carboamidation with a high efficiency and exquisite selectivity.

6.
J Am Chem Soc ; 145(31): 17029-17041, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37490763

RESUMO

The mechanism of phenoxyimine (FI)-cobalt-catalyzed C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling was studied using a combination of kinetic measurements and catalytic and stoichiometric experiments. A series of dimeric (FI)cobalt(II) bromide complexes, [(4-CF3PhFI)CoBr]2, [(4-OMePhFI)CoBr]2, and [(2,6-diiPrPhFI)CoBr]2, were isolated and characterized by 1H and 19F NMR spectroscopies, solution and solid-state magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray crystallography, and diffusion-ordered NMR spectroscopy (DOSY). One complex, [(4-CF3PhFI)CoBr]2, was explored as a single-component precatalyst for C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling. Addition of potassium methoxide to [(4-CF3PhFI)CoBr]2 generated the corresponding (FI)cobalt(II) methoxide complex as determined by 1H and 19F NMR and EPR spectroscopies. These spectroscopic signatures were used to identify this compound as the resting state during catalytic C(sp2)-C(sp3) coupling. Variable time normalization analysis (VTNA) of in situ catalytic 19F NMR spectroscopic data was used to establish an experimental rate law that was first-order in a (FI)cobalt(II) precatalyst, zeroth-order in the alkyl halide, and first-order in an activated potassium methoxide-aryl boronate complex. These findings are consistent with turnover-limiting transmetalation that occurs prior to activation of the alkyl bromide electrophile. The involvement of boronate intermediates in transmetalation was corroborated by Hammett studies of electronically differentiated aryl boronic esters. Together, a cobalt(II)/cobalt(III) catalytic cycle was proposed that proceeds through a "boronate"-type mechanism.

7.
J Org Chem ; 88(17): 12493-12501, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610241

RESUMO

Herein we report a practical crystallization-induced diastereomer transformation (CIDT) of oxime isomers for the scalable asymmetric synthesis of the bicyclic diamine (1S,6R)-3,9-diazabicyclo[4.2.1]nonane derivative that serves as a valuable building block in medicinal chemistry. The developed approach utilizes (S)-phenylethylamine as a chiral auxiliary handle for CIDT, and the starting nortropinone derivative is prepared in one step from commercially available materials. The resulting E-oxime is subjected to a stereospecific Beckmann rearrangement, followed by reduction of the resulting lactam with LiAlH4 to afford the monoprotected (1S,6R)-3,9-diazabicyclo[4.2.1]nonane derivative. The development of the CIDT and understanding of the mechanistic implications leading to the high selectivity are reported.

8.
Angew Chem Int Ed Engl ; 62(51): e202313848, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37917119

RESUMO

Evaluation of the relative rates of the cobalt-catalyzed C(sp2 )-C(sp3 ) Suzuki-Miyaura cross-coupling between the neopentylglycol ester of 4-fluorophenylboronic acid and N-Boc-4-bromopiperidine established that smaller N-alkyl substituents on the phenoxyimine (FI) supporting ligand accelerated the overall rate of the reaction. This trend inspired the design of optimal cobalt catalysts with phenoxyoxazoline (FOx) and phenoxythiazoline (FTz) ligands. An air-stable cobalt(II) precatalyst, (FTz)CoBr(py)3 was synthesized and applied to the cross-coupling of an indole-5-boronic ester nucleophile with a piperidine-4-bromide electrophile that is relevant to the synthesis of reported toll-like receptor (TLR) 7/8 antagonist molecules including afimetoran. Addition of excess KOMe⋅B(Oi Pr)3 improved catalyst lifetime due to attenuation of alkoxide basicity that otherwise resulted in demetallation of the FI chelate. A first-order dependence on the cobalt precatalyst and a saturation regime in nucleophile were observed, supporting turnover-limiting transmetalation and the origin of the observed trends in N-imine substitution.

9.
Angew Chem Int Ed Engl ; 62(9): e202211794, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36524997

RESUMO

A flurry of recent research has centered on harnessing the power of nickel catalysis in organic synthesis. These efforts have been bolstered by contemporaneous development of well-defined nickel (pre)catalysts with diverse structure and reactivity. In this report, we present ten different bench-stable, 18-electron, formally zero-valent nickel-olefin complexes that are competent pre-catalysts in various reactions. Our investigation includes preparations of novel, bench-stable Ni(COD)(L) complexes (COD=1,5-cyclooctadiene), in which L=quinone, cyclopentadienone, thiophene-S-oxide, and fulvene. Characterization by NMR, IR, single-crystal X-ray diffraction, cyclic voltammetry, thermogravimetric analysis, and natural bond orbital analysis sheds light on the structure, bonding, and properties of these complexes. Applications in an assortment of nickel-catalyzed reactions underscore the complementary nature of the different pre-catalysts within this toolkit.

10.
J Am Chem Soc ; 144(42): 19337-19343, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36222701

RESUMO

An asymmetric 1,2-dicarbofunctionalization of unactivated alkenes with aryl iodides and aryl/alkenylboronic esters under nickel/bioxazoline catalysis is disclosed. A wide array of aryl and alkenyl nucleophiles are tolerated, furnishing the products in good yield and with high enantioselectivity. In addition to terminal alkenes, 1,2-disubstituted internal alkenes participate in the reaction, establishing two contiguous stereocenters with high diastereoselectivity and moderate enantioselectivity. A combination of experimental and computational techniques shed light on the mechanism of the catalytic transformation, pointing to a closed-shell pathway with an enantiodetermining migratory insertion step, where stereoinduction arises from synergistic interactions between the sterically bulky achiral sulfonamide directing group and the hemilabile bidentate ligand.


Assuntos
Alcenos , Níquel , Ligantes , Iodetos , Catálise , Ésteres , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA