Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Breast Cancer Res Treat ; 153(1): 57-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26223813

RESUMO

Heat shock factor 1 (HSF1) has long been recognized as the master transcription factor that regulates heat shock proteins (HSPs).  More recently HSF1 has been associated with a broader role in regulating response to a variety of cellular stresses beyond heat-shock.  We previously found that high HSF1 expression is associated with poor outcome in lung, breast and colon cancers. Importantly, however, the HSF1 signature correlated with poor outcome in these studies was not related to the heat shock response, which suggested that tumor outcome associated with high HSF expression may be due to processes other than stress response. Hence, we explored the question whether high HSF1 expression might be associated with the cancer stem cell (CSC) phenotype. To do so, we examined the association of HSF1 with CSC phenotype by FACS and immunofluorescence. In addition, we evaluated the effects of HSF1 over-expression and knock-down on sphere formation and CSC marker expression in breast cancer cell lines. Here, we report results demonstrating that high HSF1 not only correlates with CSC marker expression, but inducible HSF1 over-expression augments and HSF1 knock-down inhibits CSC phenotype. Furthermore, HSF1 expression confers resistance to chemotherapeutic drugs and increases CSC frequency. In conclusion, our study indicates that one of the potential HSP-independent HSF1 driven mechanisms that may contribute to poor outcome in human tumors involves regulation of the CSC phenotype. Hence, therapeutic inhibition of HSF1 may be one route to target CSCs in human tumors.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Fatores de Transcrição/metabolismo , Biomarcadores , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Fatores de Transcrição de Choque Térmico , Humanos , Fatores de Transcrição/genética
2.
Sci Transl Med ; 15(719): eadh1892, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878674

RESUMO

Programmed cell death protein 1 (PD-1) immune checkpoint blockade therapy has revolutionized cancer treatment. Although PD-1 blockade is effective in a subset of patients with cancer, many fail to respond because of either primary or acquired resistance. Thus, next-generation strategies are needed to expand the depth and breadth of clinical responses. Toward this end, we designed a human primary T cell phenotypic high-throughput screening strategy to identify small molecules with distinct and complementary mechanisms of action to PD-1 checkpoint blockade. Through these efforts, we selected and optimized a chemical series that showed robust potentiation of T cell activation and combinatorial activity with αPD-1 blockade. Target identification was facilitated by chemical proteomic profiling with a lipid-based photoaffinity probe, which displayed enhanced binding to diacylglycerol kinase α (DGKα) in the presence of the active compound, a phenomenon that correlated with the translocation of DGKα to the plasma membrane. We further found that optimized leads within this chemical series were potent and selective inhibitors of both DGKα and DGKζ, lipid kinases that constitute an intracellular T cell checkpoint that blunts T cell signaling through diacylglycerol metabolism. We show that dual DGKα/ζ inhibition amplified suboptimal T cell receptor signaling mediated by low-affinity antigen presentation and low major histocompatibility complex class I expression on tumor cells, both hallmarks of resistance to PD-1 blockade. In addition, DGKα/ζ inhibitors combined with αPD-1 therapy to elicit robust tumor regression in syngeneic mouse tumor models. Together, these findings support targeting DGKα/ζ as a next-generation T cell immune checkpoint strategy.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Camundongos , Animais , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Proteômica , Diacilglicerol Quinase/metabolismo , Linfócitos T , Lipídeos
3.
Nat Commun ; 6: 7419, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26080861

RESUMO

Currently available human tumour cell line panels consist of a small number of lines in each lineage that generally fail to retain the phenotype of the original patient tumour. Here we develop a cell culture medium that enables us to routinely establish cell lines from diverse subtypes of human ovarian cancers with >95% efficiency. Importantly, the 25 new ovarian tumour cell lines described here retain the genomic landscape, histopathology and molecular features of the original tumours. Furthermore, the molecular profile and drug response of these cell lines correlate with distinct groups of primary tumours with different outcomes. Thus, tumour cell lines derived using this methodology represent a significantly improved platform to study human tumour pathophysiology and response to therapy.


Assuntos
Carcinoma/patologia , Linhagem Celular Tumoral , Neoplasias Ovarianas/patologia , Cisplatino , Meios de Cultura , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Paclitaxel , Fenótipo
4.
PLoS One ; 8(11): e80314, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303006

RESUMO

The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV) and fallopian tube (FT) epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome.


Assuntos
Células Epiteliais/metabolismo , Tubas Uterinas/metabolismo , Perfilação da Expressão Gênica , Neoplasias Ovarianas/genética , Ovário/metabolismo , Transcriptoma , Animais , Linhagem Celular Transformada , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Cultura Primária de Células , Prognóstico
5.
Cancer Biol Ther ; 8(6): 485-96, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19411863

RESUMO

One of the most common cancers in women world wide, breast cancer is classically an endocrine-dependent cancer. It has been known for over a century that development, progression and metastasis of breast cancer are strongly influenced by hormonal factors. Indeed about two-thirds of breast cancers express the estrogen receptor α (ERα) protein, a key predictor of prognosis and response to endocrine therapy. These cancers are frequently amenable to therapies that target estrogen signaling pathways, including selective estrogen receptor modulators like tamoxifen, selective estrogen receptor downregulators like fulvestrant; and agents that reduce estrogen ligand like aromatase inhibitors and ovarian suppression through luteinizing hormone-releasing hormone (LHRH) agonists. It is likely that these approaches, especially adjuvant tamoxifen, have contributed to the reduction in breast cancer mortality that has been observed in recent years. However, data from clinical studies have suggested that only about 60% of ERα-positive breast cancers respond to hormonal therapy. Further, those tumors that lack expression of ERα and the estrogen-regulated progesterone receptor (PgR) are unresponsive to hormone therapy. Thus the problem of acquired or de novo endocrine resistance is a substantial one. Recent molecular and biological advances have contributed to our understanding about potential underlying mechanisms. Here we will focus especially on silencing the expression of ERα as one such endocrine-resistance mechanism and how it might be exploited clinically.


Assuntos
Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
6.
J Proteome Res ; 5(3): 599-610, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16512675

RESUMO

Functional proteomics approaches that comprehensively evaluate the biological activities of human cDNAs may provide novel insights into disease pathogenesis. To systematically investigate the functional activity of cDNAs that have been implicated in breast carcinogenesis, we generated a collection of cDNAs relevant to breast cancer, the Breast Cancer 1000 (BC1000), and conducted screens to identify proteins that induce phenotypic changes that resemble events which occur during tumor initiation and progression. Genes were selected for this set using bioinformatics and data mining tools that identify genes associated with breast cancer. Greater than 1000 cDNAs were assembled and sequence verified with high-throughput recombination-based cloning. To our knowledge, the BC1000 represents the first publicly available sequence-validated human disease gene collection. The functional activity of a subset of the BC1000 collection was evaluated in cell-based assays that monitor changes in cell proliferation, migration, and morphogenesis in MCF-10A mammary epithelial cells expressing a variant of ErbB2 that can be inducibly activated through dimerization. Using this approach, we identified many cDNAs, encoding diverse classes of cellular proteins, that displayed activity in one or more of the assays, thus providing insights into a large set of cellular proteins capable of inducing functional alterations associated with breast cancer development.


Assuntos
Neoplasias da Mama/genética , DNA Complementar/isolamento & purificação , Proteômica , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Humanos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA