Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 214(1): 376-387, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27905116

RESUMO

Horizontal gene transfer (HGT) among flowering plant mitochondria occurs frequently and, in most cases, leads to nonfunctional transgenes in the recipient genome. Parasitic plants are particularly prone to this phenomenon, but their mitochondrial genomes (mtDNA) have been largely unexplored. We undertook a large-scale mitochondrial genomic study of the holoparasitic plant Lophophytum mirabile (Balanophoraceae). Comprehensive phylogenetic analyses were performed to address the frequency, origin, and impact of HGT. The sequencing of the complete mtDNA of L. mirabile revealed the unprecedented acquisition of host-derived mitochondrial genes, representing 80% of the protein-coding gene content. All but two of these foreign genes replaced the native homologs and are probably functional in energy metabolism. The genome consists of 54 circular-mapping chromosomes, 25 of which carry no intact genes. The likely functional replacement of up to 26 genes in L. mirabile represents a stunning example of the potential effect of rampant HGT on plant mitochondria. The use of host-derived genes may have a positive effect on the host-parasite relationship, but could also be the result of nonadaptive forces.


Assuntos
Genes Mitocondriais , Plantas/genética , Homologia de Sequência do Ácido Nucleico , Sequência de Bases , Mapeamento Cromossômico , DNA Mitocondrial/genética , Ácidos Graxos Insaturados/genética , Transferência Genética Horizontal , Genes de Plantas , Especiação Genética , Genoma Mitocondrial , Fases de Leitura Aberta/genética , Filogenia , Seleção Genética
2.
Plants (Basel) ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448803

RESUMO

Carrots require a certain number of cold hours to become vernalized and proceed to the reproductive stage, and this phenomenon is genotype-dependent. Annual carrots require less cold than biennials to flower; however, quantitative variation within annuals and biennials also exists, defining a gradient for vernalization requirement (VR). The flowering response of carrots to day length, after vernalization has occurred, is controversial. This vegetable has been described both as a long-day and a neutral-day species. The objective of this study was to evaluate flowering time and frequency in response to different cold treatments and photoperiod regimes in various carrot genotypes. To this end, three annual genotypes from India, Brazil, and Pakistan, and a biennial carrot from Japan, were exposed to 7.5 °C during 30, 60, 90, or 120 days, and then transferred to either long day (LD) or short day (SD) conditions. Significant variation (p < 0.05) among the carrot genotypes and among cold treatments were found, with increased flowering rates and earlier onset of flowering being associated with longer cold exposures. No significant differences in response to photoperiod were found, suggesting that post-vernalization day length does not influence carrot flowering. These findings will likely impact carrot breeding and production of both root and seed, helping in the selection of adequate genotypes and sowing dates to manage cold exposure and day-length for different production purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA