Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Model Softw ; 149: 1-15, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35310371

RESUMO

We developed statistical models to generate runoff time-series at National Hydrography Dataset Plus Version 2 (NHDPlusV2) catchment scale for the Continental United States (CONUS). The models use Normalized Difference Vegetation Index (NDVI) based Curve Number (CN) to generate initial runoff time-series which then is corrected using statistical models to improve accuracy. We used the North American Land Data Assimilation System 2 (NLDAS-2) catchment scale runoff time-series as the reference data for model training and validation. We used 17 years of 16-day, 250-m resolution NDVI data as a proxy for hydrologic conditions during a representative year to calculate 23 NDVI based-CN (NDVI-CN) values for each of 2.65 million NHDPlusV2 catchments for the Contiguous U.S. To maximize predictive accuracy while avoiding optimistically biased model validation results, we developed a spatio-temporal cross-validation framework for estimating, selecting, and validating the statistical correction models. We found that in many of the physiographic sections comprising CONUS, even simple linear regression models were highly effective at correcting NDVI-CN runoff to achieve Nash-Sutcliffe Efficiency values above 0.5. However, all models showed poor performance in physiographic sections that experience significant snow accumulation.

2.
Transfusion ; 61(5): 1518-1524, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713454

RESUMO

BACKGROUND: Hematopoietic progenitor cell (HPC) and immune effector cell (IEC) therapies often require high doses of mononuclear cells (MNCs), whether CD34+ cells, lymphocytes, or monocytes. Cells for IEC can be sourced from HPC products. We thus examined potentially modifiable variables affecting collection efficiencies (CEs) of MNC subsets in HPC collection and also of the typically undesired cell types of platelets, granulocytes, and red cells, which hinder downstream processing. Finally, we sought to confirm previously indeterminate studies of the effect of an adjusted collect flow rate (CFR) on CD34+ CE. STUDY DESIGN AND METHODS: We performed univariate and multivariate regression analyses of all 135 National Marrow Donor Program (NMDP) HPC collections in 2019 and compared these fixed CFR procedures to previous NMDP collections using adjusted CFRs. RESULTS: Target cell CEs decreased with increasing peripheral blood (PB) concentration and were associated with different cell type locations within the MNC layer. CEs of undesired cell types varied with standard procedural parameters (inlet flow rate, whole blood processed, etc.). Interestingly, some CEs increased with preapheresis hematocrit. Finally, adjusting the CFR by PB MNC count improved MNC CE but not CD34+ CE. CONCLUSION: Correlation of target cell CEs with their PB concentration and different cell type locations by depth within the MNC layer indicates the importance of investigating the compensatory fine-tuning of procedure variables to improve CE. Correlation of CEs with PB hematocrit, and CFR adjustment by a modified PB MNC and/or PB CD34 algorithm should be further explored. Adjusting standard procedural parameters may reduce product contamination.


Assuntos
Células-Tronco Hematopoéticas/citologia , Separação Celular , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Humanos , Doadores de Tecidos , Transplante Homólogo
3.
Environ Model Softw ; 123: 1-104570, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32021561

RESUMO

Input data acquisition and preprocessing is time-consuming and difficult to handle and can have major implications on environmental modeling results. US EPA's Hydrological Micro Services Precipitation Comparison and Analysis Tool (HMS-PCAT) provides a publicly available tool to accomplish this critical task. We present HMS-PCAT's software design and its use in gathering, preprocessing, and evaluating precipitation data through web services. This tool simplifies catchment and point-based data retrieval by automating temporal and spatial aggregations. In a demonstration of the tool, four gridded precipitation datasets (NLDAS, GLDAS, DAYMET, PRISM) and one set of gauge data (NCEI) were retrieved for 17 regions in the United States and evaluated on 1) how well each dataset captured extreme events and 2) how datasets varied by region. HMS-PCAT facilitates data visualizations, comparisons, and statistics by showing the variability between datasets and allows users to explore the data when selecting precipitation datasets for an environmental modeling application.

4.
Environ Model Softw ; 1272020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33746558

RESUMO

The Piscine Stream Community Estimation System (PiSCES) provides users with a hypothesized fish community for any stream reach in the conterminous United States using information obtained from Nature Serve, the US Geological Survey (USGS), StreamCat, and the Peterson Field Guide to Freshwater Fishes of North America for over 1000 native and non-native freshwater fish species. PiSCES can filter HUC8-based fish assemblages based on species-specific occurrence models; create a community abundance/biomass distribution by relating relative abundance to mean body weight of each species; and allow users to query its database to see ancillary characteristics of each species (e.g., habitat preferences and maximum size). Future efforts will aim to improve the accuracy of the species distribution database and refine/augment increase the occurrence models. The PiSCES tool is accessible at the EPA's Quantitative Environmental Domain (QED) website at https://qed.epacdx.net/pisces/.

5.
J Am Water Resour Assoc ; 56(3): 486-506, 2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33424224

RESUMO

Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter-elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network-Daily (GHCN-D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN-D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN-D based SWAT-simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge-based measurements can improve hydrologic model performance, especially for extreme events.

6.
J Environ Qual ; 47(5): 1103-1114, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272785

RESUMO

Microbial fate and transport in watersheds should include a microbial source apportionment analysis that estimates the importance of each source, relative to each other and in combination, by capturing their impacts spatially and temporally under various scenarios. A loosely configured software infrastructure was used in microbial source-to-receptor modeling by focusing on animal- and human-impacted mixed-use watersheds. Components include data collection software, a microbial source module that determines loading rates from different sources, a watershed model, an inverse model for calibrating flows and microbial densities, tabular and graphical viewers, software to convert output to different formats, and a model for calculating risk from pathogen exposure. The system automates, as much as possible, the manual process of accessing and retrieving data and completes input data files of the models. The workflow considers land-applied manure from domestic animals on undeveloped areas; direct shedding (excretion) on undeveloped lands by domestic animals and wildlife; pastureland, cropland, forest, and urban or engineered areas; sources that directly release to streams from leaking septic systems; and shedding by domestic animals directly to streams. The infrastructure also considers point sources from regulated discharges. An application is presented on a real-world watershed and helps answer questions such as: What are the major microbial sources? What practices contribute to contamination at the receptor location? What land-use types influence contamination at the receptor location? and Under what conditions do these sources manifest themselves? This research aims to improve our understanding of processes related to pathogen and indicator dynamics in mixed-use watershed systems.


Assuntos
Monitoramento Ambiental , Rios , Animais , Humanos , Esterco
7.
Ecol Modell ; 376: 15-27, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30147220

RESUMO

We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop+Pesticide model. Simulations are performed of hive population trajectories with and without pesticide exposure to determine the effects of weather, queen strength, foraging activity, colony resources, and Varroa populations on colony growth and survival. The daily resolution of the model allows us to conditionally identify sensitivity metrics. Simulations indicate queen strength and forager lifespan are consistent, critical inputs for colony dynamics in both the control and exposed conditions. Adult contact toxicity, application rate and nectar load become critical parameters for colony dynamics within exposed simulations. Daily sensitivity analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs.

8.
Environ Model Softw ; 109: 93-103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31595145

RESUMO

Cyanobacterial harmful algal blooms (cyanoHAB) cause human and ecological health problems in lakes worldwide. The timely distribution of satellite-derived cyanoHAB data is necessary for adaptive water quality management and for targeted deployment of water quality monitoring resources. Software platforms that permit timely, useful, and cost-effective delivery of information from satellites are required to help managers respond to cyanoHABs. The Cyanobacteria Assessment Network (CyAN) mobile device application (app) uses data from the European Space Agency Copernicus Sentinel-3 satellite Ocean and Land Colour Instrument (OLCI) in near realtime to make initial water quality assessments and quickly alert managers to potential problems and emerging threats related to cyanobacteria. App functionality and satellite data were validated with 25 state health advisories issued in 2017. The CyAN app provides water quality managers with a user-friendly platform that reduces the complexities associated with accessing satellite data to allow fast, efficient, initial assessments across lakes.

9.
Environ Model Softw ; 99: 126-146, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30078989

RESUMO

Many watershed models simulate overland and instream microbial fate and transport, but few provide loading rates on land surfaces and point sources to the waterbody network. This paper describes the underlying equations for microbial loading rates associated with 1) land-applied manure on undeveloped areas from domestic animals; 2) direct shedding (excretion) on undeveloped lands by domestic animals and wildlife; 3) urban or engineered areas; and 4) point sources that directly discharge to streams from septic systems and shedding by domestic animals. A microbial source module, which houses these formulations, is part of a workflow containing multiple models and databases that form a loosely configured modeling infrastructure which supports watershed-scale microbial source-to-receptor modeling by focusing on animal- and human-impacted catchments. A hypothetical application - accessing, retrieving, and using real-world data - demonstrates how the infrastructure can automate many of the manual steps associated with a standard watershed assessment, culminating in calibrated flow and microbial densities at the watershed's pour point.

10.
Ecol Modell ; 354: 104-114, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28966433

RESUMO

We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 - 2010 for the population of streams in the CRB and serves as a foundation for future model development.

11.
Sci Total Environ ; 822: 153568, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35114225

RESUMO

Reservoirs are dominant features of the modern hydrologic landscape and provide vital services. However, the unique morphology of reservoirs can create suitable conditions for excessive algae growth and associated cyanobacteria blooms in shallow in-flow reservoir locations by providing warm water environments with relatively high nutrient inputs, deposition, and nutrient storage. Cyanobacteria harmful algal blooms (cyanoHAB) are costly water management issues and bloom recurrence is associated with economic costs and negative impacts to human, animal, and environmental health. As cyanoHAB occurrence varies substantially within different regions of a water body, understanding in-lake cyanoHAB spatial dynamics is essential to guide reservoir monitoring and mitigate potential public exposure to cyanotoxins. Cloud-based computational processing power and high temporal frequency of satellites enables advanced pixel-based spatial analysis of cyanoHAB frequency and quantitative assessment of reservoir headwater in-flows compared to near-dam surface waters of individual reservoirs. Additionally, extensive spatial coverage of satellite imagery allows for evaluation of spatial trends across many dozens of reservoir sites. Surface water cyanobacteria concentrations for sixty reservoirs in the southern U.S. were estimated using 300 m resolution European Space Agency (ESA) Ocean and Land Colour Instrument (OLCI) satellite sensor for a five year period (May 2016-April 2021). Of the reservoirs studied, spatial analysis of OLCI data revealed 98% had more frequent cyanoHAB occurrence above the concentration of >100,000 cells/mL in headwaters compared to near-dam surface waters (P < 0.001). Headwaters exhibited greater seasonal variability with more frequent and higher magnitude cyanoHABs occurring mid-summer to fall. Examination of reservoirs identified extremely high concentration cyanobacteria events (>1,000,000 cells/mL) occurring in 70% of headwater locations while only 30% of near-dam locations exceeded this threshold. Wilcoxon signed-rank tests of cyanoHAB magnitudes using paired-observations (dates with observations in both a reservoir's headwater and near-dam locations) confirmed significantly higher concentrations in headwater versus near-dam locations (p < 0.001).


Assuntos
Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Hidrologia , Lagos , Imagens de Satélites
12.
Chemosphere ; 194: 94-106, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29197820

RESUMO

Eight software applications are compared for their performance in estimating the octanol-water partition coefficient (Kow), melting point, vapor pressure and water solubility for a dataset of polychlorinated biphenyls, polybrominated diphenyl ethers, polychlorinated dibenzodioxins, and polycyclic aromatic hydrocarbons. The predicted property values are compared against a curated dataset of measured property values compiled from the scientific literature with careful consideration given to the analytical methods used for property measurements of these hydrophobic chemicals. The variability in the predicted values from different calculators generally increases for higher values of Kow and melting point and for lower values of water solubility and vapor pressure. For each property, no individual calculator outperforms the others for all four of the chemical classes included in the analysis. Because calculator performance varies based on chemical class and property value, the geometric mean and the median of the calculated values from multiple calculators that use different estimation algorithms are recommended as more reliable estimates of the property value than the value from any single calculator.


Assuntos
Fenômenos Químicos , Poluentes Ambientais/análise , Éteres Difenil Halogenados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Consenso , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Octanóis/química , Software/normas , Solubilidade , Pressão de Vapor , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA