RESUMO
Much like passive materials, active systems can be affected by the presence of imperfections in their microscopic order, called defects, that influence macroscopic properties. This suggests the possibility to steer collective patterns by introducing and controlling defects in an active system. Here we show that a self-assembled, passive nematic is ideally suited to control the pattern formation process of an active fluid. To this end, we force microtubules to glide inside a passive nematic material made from actin filaments. The actin nematic features self-assembled half-integer defects that steer the active microtubules and lead to the formation of macroscopic polar patterns. Moreover, by confining the nematic in circular geometries, chiral loops form. We find that the exact positioning of nematic defects in the passive material deterministically controls the formation and the polarity of the active flow, opening the possibility of efficiently shaping an active material using passive defects.
RESUMO
Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid-solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications.
Assuntos
Nanopartículas Metálicas , Prata , Eletroquímica/métodos , Eletrólitos , Nanopartículas Metálicas/química , Microeletrodos , OxirreduçãoRESUMO
An increasing demand for bioelectronics that interface with living systems has driven the development of materials to resolve mismatches between electronic devices and biological tissues. So far, a variety of different polymers have been used as substrates for bioelectronics. Especially, biopolymers have been investigated as next-generation materials for bioelectronics because they possess interesting characteristics such as high biocompatibility, biodegradability, and sustainability. However, their range of applications has been restricted due to the limited compatibility of classical fabrication methods with such biopolymers. Here, we introduce a fabrication process for thin and large-area films of chitosan nanofibers (CSNFs) integrated with conductive materials. To this end, we pattern carbon nanotubes (CNTs), silver nanowires, and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) by a facile filtration process that uses polyimide masks fabricated via laser ablation. This method yields feedlines of conductive material on nanofiber paper and demonstrates compatibility with conjugated and high-aspect-ratio materials. Furthermore, we fabricate a CNT neural interface electrode by taking advantage of this fabrication process and demonstrate peripheral nerve stimulation to the rapid extensor nerve of a live locust. The presented method might pave the way for future bioelectronic devices based on biopolymer nanofibers.
Assuntos
Nanofibras , Nanotubos de Carbono , Nanofios , Biomassa , Prata , EletrodosRESUMO
This study introduces a thermophoretic lab-on-a-chip device to measure the Soret coefficient. We use resistive heating of a microwire on the chip to induce a temperature gradient, which is measured by fluorescence lifetime imaging microscopy (FLIM). To verify the functionality of the device, we used dyed polystyrene particles with a diameter of 25 nm. A confocal microscope is utilized to monitor the concentration profile of colloidal particles in the temperature field. Based on the measured temperature and concentration differences, we calculate the corresponding Soret coefficient. The same particles have been recently investigated with thermal diffusion forced Rayleigh scattering (TDFRS) and we find that the obtained Soret coefficients agree with literature results. This chip offers a simple way to study the thermophoretic behavior of biological systems in multicomponent buffer solutions quantitatively, which are difficult to study with optical methods solely relying on the refractive index contrast.
Assuntos
Microscopia , TemperaturaRESUMO
Recent investigations into cardiac or nervous tissues call for systems that are able to electrically record in 3D as opposed to 2D. Typically, challenging microfabrication steps are required to produce 3D microelectrode arrays capable of recording at the desired position within the tissue of interest. As an alternative, additive manufacturing is becoming a versatile platform for rapidly prototyping novel sensors with flexible geometric design. In this work, 3D MEAs for cell-culture applications were fabricated using a piezoelectric inkjet printer. The aspect ratio and height of the printed 3D electrodes were user-defined by adjusting the number of deposited droplets of silver nanoparticle ink along with a continuous printing method and an appropriate drop-to-drop delay. The Ag 3D MEAs were later electroplated with Au and Pt in order to reduce leakage of potentially cytotoxic silver ions into the cellular medium. The functionality of the array was confirmed using impedance spectroscopy, cyclic voltammetry, and recordings of extracellular potentials from cardiomyocyte-like HL-1 cells.
Assuntos
Nanopartículas Metálicas , Técnicas de Cultura de Células , Espectroscopia Dielétrica , Microeletrodos , PrataRESUMO
Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.
RESUMO
We report the influence of electrolyte composition and concentration on the stochastic amperometric detection of individual silver nanoparticles at microelectrode arrays and show that the sensor response at certain electrode potentials is dependent on both the conductivity of the electrolyte and the concentration of chloride ions. We further demonstrate that the chloride concentration in solution heavily influences the characteristic current spike shape of recorded nanoparticle impacts: While typically too short to be resolved in the measured current, the spike widths are significantly broadened at low chloride concentrations below 10â mm and range into the millisecond regime. The analysis of more than 25 000 spikes reveals that this effect can be explained by the diffusive mass transport of chloride ions to the nanoparticle, which limits the oxidation rate of individual silver nanoparticles to silver chloride at the chosen electrode potential.
RESUMO
Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell-chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell-electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes.
RESUMO
We investigate the influence of self-assembled alkanethiol monolayers at the surface of platinum microelectrode arrays on the stochastic amperometric detection of citrate-stabilized silver nanoparticles in aqueous solutions. The measurements were performed using a microelectrode array featuring 64 individually addressable electrodes that are recorded in parallel with a sampling rate of 10 kHz for each channel. We show that both the functional end group and the total length of the alkanethiol influence the charge transfer. Three different terminal groups, an amino, a hydroxyl, and a carboxyl, were investigated using two different molecule lengths of 6 and 11 carbon atoms. Finally, we show that a monolayer of alkanethiols with a length of 11 carbon atoms and a carboxyl terminal group can efficiently block the charge transfer of free nanoparticles in an aqueous solution.
Assuntos
Nanopartículas Metálicas/análise , Prata/análise , Compostos de Sulfidrila/química , Técnicas Eletroquímicas , Eletrodos , Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas/química , Modelos Químicos , Oxirredução , Prata/química , Processos EstocásticosRESUMO
We introduce the stochastic amperometric detection of silver nanoparticles on-chip using a microelectrode array. The technique combines the advantages of parallel and low-noise recordings at individually addressable microelectrodes. We demonstrate the detection of subpicomolar concentrations of silver nanoparticles with a diameter of 10 nm at sampling rates in the kilohertz regime for each channel. By comparison to random walk simulations, we show that the sensitivity of a single measurement is mainly limited by adsorption of nanoparticles at the surface of the chips and the measurement time.
Assuntos
Iluminação , Nanopartículas Metálicas/análise , Prata/análise , Iluminação/instrumentação , Microeletrodos , Processos EstocásticosRESUMO
An integrated translational biosensing technology based on arrays of silicon nanowire field-effect transistors (SiNW FETs) is described and has been preclinically validated for the ultrasensitive detection of the cancer biomarker ALCAM in serum. High-quality SiNW arrays have been rationally designed toward their implementation as molecular biosensors. The FET sensing platform has been fabricated using a complementary metal oxide semiconductor (CMOS)-compatible process. Reliable and reproducible electrical performance has been demonstrated via electrical characterization using a custom-designed portable readout device. Using this platform, the cancer prognostic marker ALCAM could be detected in serum with a detection limit of 15.5 pg/mL. Importantly, the detection could be completed in less than 30 min and span a wide dynamic detection range (â¼10(5)). The SiNW-on-a-chip biosensing technology paves the way to the translational clinical application of FET in the detection of cancer protein markers.
Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/instrumentação , Metais/química , Nanofios/química , Neoplasias/diagnóstico , Óxidos/química , Semicondutores , Silício/química , Antígenos CD/sangue , Técnicas Biossensoriais/métodos , Moléculas de Adesão Celular Neuronais/sangue , Proteínas Fetais/sangue , Humanos , Neoplasias/sangue , Neoplasias/terapia , PrognósticoRESUMO
We investigate the chronoamperometric noise characteristics of electron-transfer reactions occurring on single nanoparticles (NPs) and assemblies of well-separated NPs on a supporting surface. To this end, we combine a formerly described expression for the steady-state current of a single particle with the shot-noise model and derive an expression for the signal-to-noise ratio as a function of bulk concentration and particle radius. Our findings are supported by random-walk simulations, which closely match the analytical results.
RESUMO
Nanoporous redox cycling devices are highly efficient tools for the electrochemical sensing of redox-active molecules. By using a redox-active mediator, this concept can be exploited for the detection of molecular binding events via blocking of the redox cycling current within the nanopores. Here, we investigate the influence of different blocking scenarios inside a nanopore on the resulting redox cycling current. Our analysis is based on random walk simulations and finite element calculations. We distinguish between symmetric and asymmetric pore blocking and show that the current decrease is more pronounced in the case of asymmetric blocking reflecting the diffusion-driven pathway of the redox-active molecules. Using random walk simulations, we further study the impact of pore blocking in the frequency domain and identify relevant features of the power spectral density, which are of particular interest for sensing applications based on fluctuation analysis.
Assuntos
Técnicas Eletroquímicas/instrumentação , Nanoporos , OxirreduçãoRESUMO
We present a nanoporous dual-electrode device for highly sensitive electrochemical detection via redox cycling. The individual sensors comprise one billion nanopores in an area of 9 mm(2). Pores feature an approximate lateral distance of 100 nm and pore radii down below 20 nm. The sensor's fabrication process is based on porous alumina membranes, which are formed via anodization of aluminum films. Novel processing steps are combined enabling high-throughput fabrication of the nanoporous sensors on the wafer scale. In this context, we present an electrochemical approach for the selective passivation of nanostructured electrode areas and introduce an etching process with tuneable selectivity for the removal of titania versus alumina. The devices exhibit sensitivities of up to 330 µA mM(-1) for the redox-active probe Fe(CN)6(3-/4-) making use of highly efficient redox cycling amplification inside the nanopores. Furthermore, the large-scale interplay of the sensor's nanopores in millimetre dimensions facilitates analyte enrichment and depletion at the sensor surface. The large-area sensor therefore provides an interesting opportunity for determining the oxidation-state-dependent diffusion coefficients of redox-active molecules.
Assuntos
Óxido de Alumínio/química , Ferrocianetos/química , Nanoestruturas/química , Técnicas Eletroquímicas , Eletrodos , Oxirredução , Tamanho da Partícula , Porosidade , Propriedades de SuperfícieRESUMO
The rapid and reliable detection and quantification of nucleic acids is crucial for various applications, including infectious disease and cancer diagnostics. While conventional methods, such as the quantitative polymerase chain reaction are widely used, they are limited to the laboratory environment due to their complexity and the requirement for sophisticated equipment. In this study, we present a novel amplification-free digital sensing strategy by combining the collateral cleavage activity of the Cas12a enzyme with single-impact electrochemistry. In doing so, we modified silver nanoparticles using a straightforward temperature-assisted cofunctionalization process to subsequently detect the collision events of particles released by the activated Cas12a as distinct current spikes on a microelectrode array. The functionalization resulted in stable DNA-AgNP conjugates, making them suitable for numerous biosensor applications. Thus, our study demonstrates the potential of clustered regularly interspaced short palindromic repeats-based diagnostics combined with impact-based digital sensing for a rapid and amplification-free quantification of nucleic acids.
RESUMO
In this study, the novel 3D-printed pressure chamber for encapsulated single-cell stimulation (3D-PRESS) platform is introduced for the mechanical stimulation of single stem cells in 3D microgels. The custom-designed 3D-PRESS, allows precise pressure application up to 400 kPa at the single-cell level. Microfluidics is employed to encapsulate single mesenchymal stem cells within ionically cross-linked alginate microgels with cell adhesion RGD peptides. Rigorous testing affirms the leak-proof performance of the 3D-PRESS device up to 400 kPa, which is fully biocompatible. 3D-PRESS is implemented on mesenchymal stem cells for mechanotransduction studies, by specifically targeting intracellular calcium signaling and the nuclear translocation of a mechanically sensitive transcription factor. Applying 200 kPa pressure on individually encapsulated stem cells reveals heightened calcium signaling in 3D microgels compared to conventional 2D culture. Similarly, Yes-associated protein (YAP) translocation into the nucleus occurs at 200 kPa in 3D microgels with cell-binding RGD peptides unveiling the involvement of integrin-mediated mechanotransduction in singly encapsulated stem cells in 3D microgels. Combining live-cell imaging with precise mechanical control, the 3D-PRESS platform emerges as a versatile tool for exploring cellular responses to pressure stimuli, applicable to various cell types, providing novel insights into single-cell mechanobiology.
RESUMO
We present a multiscale approach to characterize the performance of photothermally powered, nanorobotic 3D microgels. Optically triggered nanoactuators, consisting of a gold nanorod core and thermoresponsive pNIPMAM shell, are used as building blocks to generate the nanorobotic 3D microgels. We use microfluidic encapsulation to physically embed the nanoactuators in an alginate network, to form the microgel droplets. The nanoactuators respond to near-infrared light owing to the synergistic effects of plasmonic and thermoresponsive components, and the nanorobotic 3D microgels generate compressive force under the same light stimulus. We use a multiscale approach to characterize this behavior for both the nanoactuators and the assembled microgels via dynamic light scattering and fluorescence microscopy, respectively. A thermoresponsive fluorescent molecule, Rhodamine B, is integrated into alginate chains to monitor the temperature of the microgels (22-59 °C) during actuation at laser intensities up to 6.4 µW µm-2. Our findings show that nanoactuators and the microgels exhibit reversible deformation above the lower critical solution temperature of the thermoresponsive polymer at 42 °C. 785 nm laser light triggers the generation of 2D radial strain in nanoactuators at a maximum of 44%, which translates to an average 2D radial strain of 2.1% in the nanorobotic microgels at 26.4 vol% nanoactuator loading. We then use a semi-experimental approach to quantify the photothermally generated forces in the microgels. Finite element modeling coupled with experimental measurements shows that nanorobotic microgels generate up to 8.5 nN of force over encapsulated single cells. Overall, our method provides a comprehensive approach to characterizing the mechanical performance of nanorobotic hydrogel networks.
RESUMO
Microelectrode arrays are commonly used to study the electrophysiological behavior of cells. Recently, there has been a growing interest in fabricating three-dimensional microelectrode arrays. Here, we present a novel process for the fast fabrication of epoxy-based 3D microelectrode array platforms with the assistance of laser-patterning technology. To this end, we photopatterned 3D pillars as scaffolds using epoxy-based dry films. Electrodes and conductor traces were fabricated by laser patterning of sputtered platinum films on top of the 3D structures, followed by deposition of parylene-C for insulation. Microelectrodes at the tip of the 3D structures were exposed using a vertical laser ablation process. The final electrodes demonstrated a low impedance of â¼10 kΩ at 1 kHz in electrochemical impedance spectroscopy measurements under physiological conditions. We investigated the maximum compression force of the 3D structures, which could withstand approximately 0.6 N per pillar. The 3D microelectrode arrays were used to record extracellular signals from HL-1 cells in culture as a proof of principle. Our results show regular firing of action potentials recorded at the tip of the 3D structures, demonstrating the possibility of recording cell signals in non-planar environments.
RESUMO
We investigate noise effects in nanoscaled electrochemical sensors using a three-dimensional simulation based on random walks. The presented approach allows the prediction of time-dependent signals and noise characteristics for redox cycling devices of arbitrary geometry. We demonstrate that the simulation results closely match experimental data as well as theoretical expectations with regard to measured currents and noise power spectra. We further analyze the impact of the sensor design on characteristics of the noise power spectrum. Specific transitions between independent noise sources in the frequency domain are indicative of the sensor-reservoir coupling and can be used to identify stationary design features or time-dependent blocking mechanisms. We disclose the source code of our simulation. Since our approach is highly flexible with regard to the implemented boundary conditions, it opens up the possibility for integrating a variety of surface-specific molecular reactions in arbitrary electrochemical systems. Thus, it may become a useful tool for the investigation of a wide range of noise effects in nanoelectrochemical sensors.
Assuntos
Simulação por Computador , Técnicas Eletroquímicas , Modelos Químicos , Algoritmos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Modelos Moleculares , Nanoestruturas/química , Oxirredução , Processos EstocásticosRESUMO
Real-time investigations of neurotransmitter release provide a direct insight on the mechanisms involved in synaptic communication. Carbon fiber microelectrodes are state-of-the-art tools for electrochemical measurements of single vesicle neurotransmitter release. Yet, they lack high-throughput capabilities that are required for collecting robust statistically significant data across multiple samples. Here, we present a chip-based recording system enabling parallel in vitro measurements of individual neurotransmitter release events from cells, cultured directly on planar multielectrode arrays. The applicability of this cell-based platform to pharmacological screening is demonstrated by resolving minute concentration-dependent effects of the dopamine reuptake inhibitor nomifensine on recorded single-vesicle release events from PC12 cells. The experimental results, showing an increased half-time of the recorded events, are complemented by an analytical model for the verification of drug action.