Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(51): 18132-7, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489068

RESUMO

Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O(+) and Cs(+) ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm(-1) range. The magic H3O(+)(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.

2.
Phys Chem Chem Phys ; 18(38): 26743-26754, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722600

RESUMO

We use cryogenic ion trap vibrational spectroscopy to study the structure of the protonated water pentamer, H+(H2O)5, and its fully deuterated isotopologue, D+(D2O)5, over nearly the complete infrared spectral range (220-4000 cm-1) in combination with harmonic and anharmonic electronic structure calculations as well as RRKM modelling. Isomer-selective IR-IR double-resonance measurements on the H+(H2O)5 isotopologue establish that the spectrum is due to a single constitutional isomer, thus discounting the recent analysis of the band pattern in the context of two isomers based on AIMD simulations 〈W. Kulig and N. Agmon, Phys. Chem. Chem. Phys., 2014, 16, 4933-4941〉. The evolution of the persistent bands in the D+(D2O)5 cluster allows the assignment of the fundamentals in the spectra of both isotopologues, and the simpler pattern displayed by the heavier isotopologue is consistent with the calculated spectrum for the branched, Eigen-based structure originally proposed 〈J.-C. Jiang, et al., J. Am. Chem. Soc., 2000, 122, 1398-1410〉. This pattern persists in the vibrational spectra of H+(H2O)5 in the temperature range from 13 K up to 250 K. The present study also underscores the importance of considering nuclear quantum effects in predicting the kinetic stability of these isomers at low temperatures.

3.
J Chem Phys ; 144(7): 074305, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26896984

RESUMO

We report the vibrational signatures of a single H2O molecule occupying distinct sites of the hydration network in the Cs(+)(H2O)6 cluster. This is accomplished using isotopomer-selective IR-IR hole-burning on the Cs(+)(D2O)5(H2O) clusters formed by gas-phase exchange of a single, intact H2O molecule for D2O in the Cs(+)(D2O)6 ion. The OH stretching pattern of the Cs(+)(H2O)6 isotopologue is accurately recovered by superposition of the isotopomer spectra, thus establishing that the H2O incorporation is random and that the OH stretching manifold is largely due to contributions from decoupled water molecules. This behavior enables a powerful new way to extract structural information from vibrational spectra of size-selected clusters by explicitly identifying the local environments responsible for specific infrared features. The Cs(+)(H2O)6 structure was unambiguously assigned to the 4.1.1 isomer (a homodromic water tetramer with two additional flanking water molecules) from the fact that its computed IR spectrum matches the observed overall pattern and recovers the embedded correlations in the two OH stretching bands of the water molecule in the Cs(+)(D2O)5(H2O) isotopomers. The 4.1.1 isomer is the lowest in energy among other candidate networks at advanced (e.g., CCSD(T)) levels of theoretical treatment after corrections for (anharmonic) zero-point energy. With the structure in hand, we then explore the mechanical origin of the various band locations using a local electric field formalism. This approach promises to provide a transferrable scheme for the prediction of the OH stretching fundamentals displayed by water networks in close proximity to solute ions.

4.
J Chem Phys ; 145(13): 134304, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27782420

RESUMO

We report the isotope-dependent vibrational predissociation spectra of the H2-tagged OH- ⋅ (H2O)n=2,3 clusters, from which we determine the strongly coordination-dependent energies of the fundamentals due to the OH groups bound to the ion and the intramolecular bending modes of the water molecules. The HOH bending fundamental is completely missing in the delocalized OH- ⋅ (H2O) binary complex but is recovered upon adding the second water molecule, thereby establishing that the dihydrate behaves as a hydroxide ion solvated by two essentially intact water molecules. The energies of the observed OH stretches are in good agreement with the values predicted by Takahashi and co-workers [Phys. Chem. Chem. Phys. 17, 25505 (2015); 15, 114 (2013)] with a theoretical model that treats the strong anharmonicities at play in this system with explicit coupling between the bound OH groups and the O-O stretching modes on an extended potential energy surface. We highlight a surprising similarity between the spectral signatures of OH- ⋅ (H2O)3 and the excess proton analogue, H3O+ ⋅ (H2O)3, both of which correspond to completed hydration shells around the proton defect. We discuss the origin of the extreme solvatochromicity displayed by both OH- and H+ in the context of the anomalously large "proton polarizabilities" of the H5O2+ and H3O2- binary complexes.

5.
Phys Chem Chem Phys ; 17(13): 8518-29, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25749545

RESUMO

This study explores the interactions underlying the IR spectra of the ionic liquid [NC4111][NTf2] and its deuterated isotopomer [d9-NC4111][NTf2] by first isolating the spectra of charged ionic building blocks using mass-selective CIVP spectroscopy and then following the evolution of these bands upon sequential assembly of the ionic constituents. The spectra of the (1,1) and (2,2) neutral ion pairs are recorded using superfluid helium droplets as well as a solid neon matrix, while those of the larger charged aggregates are again obtained with CIVP. In general, the cluster spectra are similar to that of the bulk, with the (2,2) system displaying the closest resemblance. Analysis of the polarization-dependent band intensities of the neutral ion pairs in liquid droplets as a function of external electric field yields dipole moments of the neutral aggregates. This information allows a coarse assessment of the packing structure of the neutral pairs to be antiparallel at 0.37 K, in contrast to the parallel arrangement found for the assembly of small, high-dipole neutral molecules with large rotational constants (e.g., HCN). The role of an extra anion or cation attached to both the (1,1) and the (2,2) ion pairs to form the charged clusters is discussed in the context of an additional remote, more unfavorable binding site intrinsic to the nature of the charged IL clusters and as such not anticipated in the bulk phase. Whereas for the anion itself only the lowest energy trans conformer was observed, the higher clusters showed an additional population of the cis conformer. The interactions are found to be consistent with a minimal role of hydrogen bonding.

6.
J Phys Chem A ; 119(52): 13018-24, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26608571

RESUMO

To understand how the D2d oxalate scaffold (C2O4)(2-) distorts upon capture of a proton, we report the vibrational spectra of the cryogenically cooled HO2CCO2(-) anion and its deuterated isotopologue DO2CCO2(-). The transitions associated with the skeletal vibrations and OH bending modes are sharp and are well described by inclusion of cubic terms in the normal mode expansion of the potential surface through an extended Fermi resonance analysis. The ground state structure features a five-membered ring with an asymmetric intramolecular proton bond. The spectral signatures of the hydrogen stretches, on the contrary, are surprisingly diffuse, and this behavior is not anticipated by the extended Fermi scheme. We trace the diffuse bands to very strong couplings between the high-frequency OH-stretch and the low-frequency COH bends as well as heavy particle skeletal deformations. A simple vibrationally adiabatic model recovers this breadth of oscillator strength as a 0 K analogue of the motional broadening commonly used to explain the diffuse spectra of H-bonded systems at elevated temperatures, but where these displacements arise from the configurations present at the vibrational zero-point level.

7.
J Phys Chem A ; 119(36): 9425-40, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26158593

RESUMO

We review the role that gas-phase, size-selected protonated water clusters, H(+)(H2O)n, have played in unraveling the microscopic mechanics responsible for the spectroscopic behavior of the excess proton in bulk water. Because the larger (n ≥ 10) assemblies are formed with three-dimensional cage morphologies that more closely mimic the bulk environment, we report the spectra of cryogenically cooled (10 K) clusters over the size range 2 ≤ n ≤ 28, over which the structures evolve from two-dimensional arrangements to cages at around n = 10. The clusters that feature a complete second solvation shell around a surface-embedded hydronium ion yield spectral signatures of the proton defect similar to those observed in dilute acids. The origins of the large observed shifts in the proton vibrational signature upon cluster growth were explored with two types of theoretical analyses. First, we calculate the cubic and semidiagonal quartic force constants and use these in vibrational perturbation theory calculations to establish the couplings responsible for the large anharmonic red shifts. We then investigate how the extended electronic wave functions that are responsible for the shapes of the potential surfaces depend on the nature of the H-bonded networks surrounding the charge defect. These considerations indicate that, in addition to the sizable anharmonic couplings, the position of the OH stretch most associated with the excess proton can be traced to large increases in the electric fields exerted on the embedded hydronium ion upon formation of the first and second solvation shells. The correlation between the underlying local structure and the observed spectral features is quantified using a model based on Badger's rule as well as via the examination of the electric fields obtained from electronic structure calculations.

8.
J Phys Chem A ; 119(10): 1859-66, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25647222

RESUMO

The strong temperature dependence of the I(-)·(H2O)2 vibrational predissociation spectrum is traced to the intracluster dissociation of the ion-bound water dimer into independent water monomers that remain tethered to the ion. The thermodynamics of this process is determined using van't Hoff analysis of key features that quantify the relative populations of H-bonded and independent water molecules. The dissociation enthalpy of the isolated water dimer is thus observed to be reduced by roughly a factor of three upon attachment to the ion. The cause of this reduction is explored with electronic structure calculations of the potential energy profile for dissociation of the dimer, which suggest that both reduction of the intrinsic binding energy and vibrational zero-point effects act to weaken the intermolecular interaction between the water molecules in the first hydration shell. Additional insights are obtained by analyzing how classical trajectories of the I(-)·(H2O)2 system sample the extended potential energy surface with increasing temperature.

9.
J Chem Phys ; 142(6): 064306, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681905

RESUMO

We clarify the role of the critical imidazolium C(2)H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF4] ionic liquid by analyzing the vibrational spectra of the bare EMIM(+) ion as well as that of the cationic [EMIM]2[BF4](+) (EMIM(+) = 1-ethyl-3-methylimidazolium, C6H11N2 (+)) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D2 molecules formed in a 10 K ion trap. The C(2)H behavior is isolated by following the evolution of key vibrational features when the C(2) hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM(+) analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM(+) ⋅ ⋅ ⋅ BF4 (-) ⋅ ⋅ ⋅ EMIM(+) ternary complex, the C(2)H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM(+) ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C(2)H is replaced by a methyl group are consistent with BF4 (-) attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.

10.
J Chem Phys ; 143(14): 144305, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472377

RESUMO

The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ⋅ (H2O)n=3-5](-) clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH((0)), occupying one of the primary solvation sites of the OH(-). The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the "solvent coordinate" at the heart of a prototypical proton-coupled electron transfer reaction.

11.
J Chem Phys ; 139(22): 224305, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24329066

RESUMO

To clarify the intramolecular distortions exhibited by the complementary ions in the archetypal ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4], we report the vibrational spectra of the isolated ionic constituents and small aggregates cooled to about 10 K. Deuteration of bare EMIM(+) at the C(2) position, the putative hydrogen bond donating group, establishes that the observed bulk red shift is too small (<10 cm(-1)) for hydrogen bonding to be a dominant structural feature. We then analyze how the vibrational patterns evolve with increasing size to identify the spectral signatures of well-defined structural motifs in the growing assembly. Surprisingly, the main features of the bulk spectrum are already developed in the cluster with a single BF4 (-) anion sandwiched between just two EMIM(+) cations. We suggest that this local motif, while not strongly hydrogen bonded, nonetheless induces considerable intensity in the C(2)H stretches and is a robust feature in the local molecular structure of the liquid.

12.
Science ; 354(6316): 1131-1135, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27934761

RESUMO

The Grotthuss mechanism explains the anomalously high proton mobility in water as a sequence of proton transfers along a hydrogen-bonded (H-bonded) network. However, the vibrational spectroscopic signatures of this process are masked by the diffuse nature of the key bands in bulk water. Here we report how the much simpler vibrational spectra of cold, composition-selected heavy water clusters, D+(D2O)n, can be exploited to capture clear markers that encode the collective reaction coordinate along the proton-transfer event. By complexing the solvated hydronium "Eigen" cluster [D3O+(D2O)3] with increasingly strong H-bond acceptor molecules (D2, N2, CO, and D2O), we are able to track the frequency of every O-D stretch vibration in the complex as the transferring hydron is incrementally pulled from the central hydronium to a neighboring water molecule.

13.
Science ; 344(6187): 1009-12, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24876493

RESUMO

The way in which a three-dimensional network of water molecules accommodates an excess proton is hard to discern from the broad vibrational spectra of dilute acids. The sharper bands displayed by cold gas-phase clusters, H(+)(H2O)n, are therefore useful because they encode the network-dependent speciation of the proton defect and yet are small enough to be accurately treated with electronic structure theory. We identified the previously elusive spectral signature of the proton defect in the three-dimensional cage structure adopted by the particularly stable H(+)(H2O)21 cluster. Cryogenically cooling the ion and tagging it with loosely bound deuterium (D2) enabled detection of its vibrational spectrum over the 600 to 4000 cm(-1) range. The excess charge is consistent with a tricoordinated H3O(+) moiety embedded on the surface of a clathrate-like cage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA