Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(1): E29-E37, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991452

RESUMO

Adaptive thermogenesis is a vital physiological process for small endotherms. Female animals usually are more sensitive to cold temperature due to anatomical differences. Whether there is a sex difference at a molecular level is unclear. Stress granules (SGs) are dynamic organelles in which untranslated mRNAs reside during cellular stress. We hypothesize that the prompt response of SGs to cold stress can reveal the molecular difference between sexes. By analyzing the content in SGs of brown adipose tissue (BAT) at the early phase of cold stress for both sexes, we found more diverse mRNAs docked in the SGs in male mice and these mRNAs representing an extensive cellular reprogramming including apoptosis process and cold-induced thermogenesis. In female mice, the mRNAs in SGs dominantly were comprised of genes regulating ribonucleoprotein complex biogenesis. Conversely, the proteome in SGs was commonly characterized as structure molecules and RNA processing for both sexes. A spectrum of eukaryotic initiation factors (eIFs) was detected in the SGs of both female and male BAT, while those remained unchanged upon cold stress in male mice, various eIF3 and eIF4G isoforms were found reduced in female mice. Taken together, the unique features in SGs of male BAT reflected a prompt uncoupling protein-1 (UCP1) induction which was absent in female, and female, by contrast, were prepared for long-term transcriptional and translational adaptations.NEW & NOTEWORTHY The proteome analysis reveals that stress granules are the predominant form of cytosolic messenger ribonucleoproteins of brown adipose tissue (BAT) at the early phase of cold exposure in mice for both sexes. The transcriptome of stress granules of BAT unveils a sex difference of molecular response in early phase of cold exposure in mice, and such difference prepares for a prompt response to cold stress in male mice while for long-term adaptation in female mice.


Assuntos
Caracteres Sexuais , Grânulos de Estresse , Camundongos , Feminino , Masculino , Animais , Proteoma , Isoformas de Proteínas , Tecido Adiposo Marrom/fisiologia , Termogênese/fisiologia , Temperatura Baixa , Proteína Desacopladora 1/genética , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 23(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36293233

RESUMO

Non-alcoholic fatty liver disease and its related complications are becoming one of the most important health problems globally. The liver functions as both a metabolic and an immune organ. The crosstalk between hepatocytes and intrahepatic immune cells plays a key role in coordinating a dual function of the liver in terms of the protection of the host from antigenic overload as a result of receiving nutrients and gut microbiota antigenic stimulation via facilitating immunologic tolerance. B cells are the most abundant lymphocytes in the liver. The crucial role of intrahepatic B cells in energy metabolism under different immune conditions is now emerging in the literature. The accumulating evidence has demonstrated that the antibodies and cytokines produced by B cells in the microenvironment play key and distinct roles in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Herein, we have aimed to consolidate and update the current knowledge about the pathophysiological roles of B cells as well as the underlying mechanisms in energy metabolism. Understanding how B cells can exacerbate and suppress liver damage by exploiting the antibodies and cytokines they produce will be of great importance for designing B-cell targeting therapies to treat various liver diseases.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Citocinas/metabolismo , Linfócitos B/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(29): E6927-E6936, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967177

RESUMO

Exosomes, abundant in blood, deliver various molecules to recipient cells. Endothelial cells are directly exposed to circulating substances. However, how endothelial cells respond to serum exosomes (SExos) and the implications in diabetes-associated vasculopathy have never been explored. In the present study, we showed that SExos from diabetic db/db mice (db/db SExos) were taken up by aortic endothelial cells, which severely impaired endothelial function in nondiabetic db/m+ mice. The exosomal proteins, rather than RNAs, mostly account for db/db SExos-induced endothelial dysfunction. Comparative proteomics analysis showed significant increase of arginase 1 in db/db SExos. Silence or overexpression of arginase 1 confirmed its essential role in db/db SExos-induced endothelial dysfunction. This study is a demonstration that SExos deliver arginase 1 protein to endothelial cells, representing a cellular mechanism during development of diabetic endothelial dysfunction. The results expand the scope of blood-borne substances that monitor vascular homeostasis.


Assuntos
Aorta/metabolismo , Arginase/farmacologia , Angiopatias Diabéticas , Endotélio Vascular/metabolismo , Exossomos , Animais , Aorta/patologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Endotélio Vascular/patologia , Camundongos
4.
Int J Mol Sci ; 19(2)2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473878

RESUMO

Alternative mRNA splicing is an important mechanism in expansion of proteome diversity by production of multiple protein isoforms. However, emerging evidence indicates that only a limited number of annotated protein isoforms by alternative splicing are detected, and the coding sequence of alternative splice variants usually is only slightly different from that of the canonical sequence. Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting splicing factors. The importance of environmental perturbations contributed to mis-splicing is not assessed. As significant changes in exon skipping and splicing factors expression levels are observed with diet-induced obesity, this review focuses on several well-known alternatively spliced metabolic factors and discusses recent advances in the regulation of the expressions of splice variants under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA mis-splicing for obesity-associated diseases therapies will also be discussed.


Assuntos
Processamento Alternativo/genética , Obesidade/genética , Animais , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Obesidade/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Diabetologia ; 59(3): 604-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592241

RESUMO

AIMS/HYPOTHESIS: Growing evidence supports that dysregulation of adipose tissue-derived factors contributes to the pathogenesis of diabetes and its complications. Since our global gene profiling analysis has identified lipocalin-14 (LCN14)-a secretory protein with lipid-binding properties-as a potential adipokine highly expressed in white adipose tissue (WAT), this study aims to explore the metabolic roles of LCN14 in obese mice, and to investigate the functional mechanisms involved. METHODS: Immunoassays and western blotting were performed to determine the circulating level and tissue distribution of LCN14, respectively. Recombinant adeno-associated virus (rAAV)-mediated gene delivery was used to overexpress LCN14 in diet-induced obese (DIO) mice and the effects on glucose and lipid metabolism were examined. RESULTS: LCN14 is expressed predominantly in WAT. Both circulating levels of LCN14 and its expression in adipose tissues are repressed in DIO and genetically inherited diabetic (db/db) mice. Overexpression of LCN14 by rAAV-mediated gene delivery in DIO mice significantly increased insulin sensitivity in major metabolic tissues and ameliorated hyperglycaemia by inhibiting hepatic gluconeogenesis. The reduced hepatic glucose production is attributed to the suppressive effects of LCN14 on the expression of gluconeogenic genes and on glycerol efflux in adipocytes, possibly by reducing the expression of aquaporin-7. CONCLUSIONS/INTERPRETATION: Reduced LCN14 expression is involved in the pathogenesis of obesity-related metabolic dysregulation. LCN14 exerts its beneficial effects on glucose homeostasis and insulin sensitivity via its actions in both adipocytes and hepatocytes.


Assuntos
Adipócitos/metabolismo , Glicerol/metabolismo , Hiperglicemia/metabolismo , Lipocalinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Gluconeogênese/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Nucleic Acids Res ; 42(1): 643-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097436

RESUMO

Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.


Assuntos
Íntrons , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Deleção de Genes , Genes Reporter , Fatores de Processamento de RNA , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Processamento U2AF , Elongação da Transcrição Genética , Transcrição Gênica , beta-Galactosidase/genética
7.
J Biol Chem ; 289(37): 25976-86, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074942

RESUMO

Adropin is a highly conserved polypeptide that has been suggested to act as an endocrine factor that plays important roles in metabolic regulation, insulin sensitivity, and endothelial functions. However, in this study, we provide evidence demonstrating that adropin is a plasma membrane protein expressed abundantly in the brain. Using a yeast two-hybrid screening approach, we identified NB-3/Contactin 6, a brain-specific, non-canonical, membrane-tethered Notch1 ligand, as an interaction partner of adropin. Furthermore, this interaction promotes NB3-induced activation of Notch signaling and the expression of Notch target genes. We also generated and characterized adropin knockout mice to explore the role of adropin in vivo. Adropin knockout mice exhibited decreased locomotor activity and impaired motor coordination coupled with defective synapse formation, a phenotype similar to NB-3 knockout mice. Taken together, our data suggest that adropin is a membrane-bound protein that interacts with the brain-specific Notch1 ligand NB3. It regulates physical activity and motor coordination via the NB-3/Notch signaling pathway and plays an important role in cerebellum development in mice.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Atividade Motora/genética , Proteínas/metabolismo , Receptor Notch1/metabolismo , Animais , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Proteínas/genética , Receptor Notch1/genética , Transdução de Sinais/genética
8.
Int J Mol Sci ; 16(3): 5682-96, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25768347

RESUMO

A processing is a tightly regulated and highly complex pathway which includes transcription, splicing, editing, transportation, translation and degradation. It has been well-documented that splicing of RNA polymerase II medicated nascent transcripts occurs co-transcriptionally and is functionally coupled to other RNA processing. Recently, increasing experimental evidence indicated that pre-mRNA splicing influences RNA degradation and vice versa. In this review, we summarized the recent findings demonstrating the coupling of these two processes. In addition, we highlighted the importance of splicing in the production of intronic miRNA and circular RNAs, and hence the discovery of the novel mechanisms in the regulation of gene expression.


Assuntos
Precursores de RNA/metabolismo , Splicing de RNA , Exossomos/metabolismo , Humanos , MicroRNAs/metabolismo
9.
Biochim Biophys Acta ; 1833(10): 2165-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23665047

RESUMO

Activating transcription factor 4 (ATF4) is a master regulator of genes involved in unfolded protein response (UPR) and its translation is regulated through reinitiation at upstream open reading frames. Here, we demonstrate internal ribosome entry site (IRES)-mediated translation of an alternatively spliced variant of human ATF4. This variant that contains four upstream open reading frames in the 5' leader region was expressed in leukocytes and other tissues. mRNA and protein expression of this variant was activated in the UPR. Its translation was neither inhibited by steric hindrance nor affected by eIF4G1 inactivation, indicating a cap-independent and IRES-dependent mechanism not mediated by ribosome scanning-reinitiation. The IRES activity mapped to a highly structured region that partially overlaps with the third and fourth open reading frames was unlikely attributed to cryptic promoter or splicing, but was activated by PERK-induced eIF2α phosphorylation. Taken together, our findings reveal a new mechanism for translational regulation of ATF4 in mammalian UPR.


Assuntos
Fator 4 Ativador da Transcrição/genética , Processamento Alternativo/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas , Ribossomos/metabolismo , Resposta a Proteínas não Dobradas/genética , Western Blotting , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HeLa , Humanos , Luciferases/metabolismo , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/genética
10.
Retrovirology ; 10: 40, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23577667

RESUMO

BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. RESULTS: In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. CONCLUSIONS: Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy.


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene tax/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular , Humanos
11.
Musculoskeletal Care ; 21(1): 78-96, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36912214

RESUMO

OBJECTIVE: To compare the effects of Pilates exercise (PE) with other forms of exercise on pain and disability in individuals with chronic non-specific low back pain (CNSLBP) and to inform clinical practice and future research. STUDY DESIGN: Systematic review with meta-analysis conducted and reported in line the Preferred Reporting Items for Systematic review and Meta-analysis. LITERATURE SEARCH: Six electronic databases were searched from inception to April 2021. STUDY SELECTION CRITERIA: Randomised controlled trials (RCTs) comparing the effect of PE with other forms of exercise for adults with CNSLBP on pain and disability. DATA SYNTHESIS: Two reviewers assessed the risk of bias of the trials, guided by the Cochrane RoB2 tool. Available data were extracted for meta-analysis with subgroup analysis. Pilates exercise was compared to general exercise (GE), direction-specific exercise (DSE) and spinal stabilisation exercise (SSE). Certainty of evidence was interpreted following the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS: Eleven RCTs were included. A low certainty of evidence supported PE was more effective than GE in pain reduction [Effect size (ES) 0.44]. Moreover, very low levels of certainty were revealed for effectiveness of PE compared with DSE for pain reduction (ES 0.65) and equivalence of PE and SSE for pain and disability. CONCLUSIONS: This review found no strong evidence for using one type of exercise intervention over another when managing patients with CNSLBP. Existing evidence does not allow this review to draw definitive recommendations. In the absence of a superior exercise form clinicians should work collaboratively with the patient, using the individual's goals and preferences to guide exercise selection. Further appropriately designed research is warranted to explore this topic further.


Assuntos
Dor Crônica , Técnicas de Exercício e de Movimento , Dor Lombar , Adulto , Humanos , Terapia por Exercício , Exercício Físico
12.
Elife ; 122023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37580962

RESUMO

Background: Recent research has shown that the adhesion G protein-coupled receptor F1 (Adgrf1; also known as GPR110; PGR19; KPG_012; hGPCR36) is an oncogene. The evidence is mainly based on high expression of Adgrf1 in numerous cancer types, and knockdown Adgrf1 can reduce the cell migration, invasion, and proliferation. Adgrf1 is, however, mostly expressed in the liver of healthy individuals. The function of Adgrf1 in liver has not been revealed. Interestingly, expression level of hepatic Adgrf1 is dramatically decreased in obese subjects. Here, the research examined whether Adgrf1 has a role in liver metabolism. Methods: We used recombinant adeno-associated virus-mediated gene delivery system, and antisense oligonucleotide was used to manipulate the hepatic Adgrf1 expression level in diet-induced obese mice to investigate the role of Adgrf1 in hepatic steatosis. The clinical relevance was examined using transcriptome profiling and archived biopsy specimens of liver tissues from non-alcoholic fatty liver disease (NAFLD) patients with different degree of fatty liver. Results: The expression of Adgrf1 in the liver was directly correlated to fat content in the livers of both obese mice and NAFLD patients. Stearoyl-coA desaturase 1 (Scd1), a crucial enzyme in hepatic de novo lipogenesis, was identified as a downstream target of Adgrf1 by RNA-sequencing analysis. Treatment with the liver-specific Scd1 inhibitor MK8245 and specific shRNAs against Scd1 in primary hepatocytes improved the hepatic steatosis of Adgrf1-overexpressing mice and lipid profile of hepatocytes, respectively. Conclusions: These results indicate Adgrf1 regulates hepatic lipid metabolism through controlling the expression of Scd1. Downregulation of Adgrf1 expression can potentially serve as a protective mechanism to stop the overaccumulation of fat in the liver in obese subjects. Overall, the above findings not only reveal a new mechanism regulating the progression of NAFLD, but also proposed a novel therapeutic approach to combat NAFLD by targeting Adgrf1. Funding: This work was supported by the National Natural Science Foundation of China (81870586), Area of Excellence (AoE/M-707/18), and General Research Fund (15101520) to CMW, and the National Natural Science Foundation of China (82270941, 81974117) to SJ.


Being overweight or obese increases the risk of developing numerous medical conditions including non-alcoholic fatty liver disease (NAFLD), where excess fat accumulates in the liver. NAFLD is a major global health issue affecting about 25% of the world's population and, if left untreated, can lead to liver inflammation as well as serious complications such as type 2 diabetes, heart disease, and liver cancer. Currently, there are no medications which specifically treat NFALD. Instead, only medications which help to manage the associated health complications are available. Therefore, a better understanding of NFALD is required to help to develop new strategies for diagnosing and treating the progression of this disease. A family of proteins known as GPCRs have crucial roles in regulating various bodily processes and are therefore commonly targeted for the treatment of disease. By identifying the GPCRs specifically involved in liver fat accumulation, new treatments for NFALD could be identified. Previous studies identified a GPCR known as Adgrf1 that is mainly found in liver cells, but its role remained unclear. To investigate the function of Adgrf1 in the liver, Wu et al. studied obese mice and human patients with NAFLD. The experiments showed that elevated levels of Adgrf1 in human and mouse livers led to increased fat accumulation. On the other hand, livers with lower levels of Adgrf1 exhibited reduced fat levels. A technique called RNA sequencing revealed that Adgrf1 induces expression of enzymes involved in fat synthesis, including a key regulator called Scd1. Treating mice with high levels of liver fat with molecules that inhibit Scd1 decreased the symptoms of Adgrf1-mediated fatty liver disease. These findings suggest therapies that decrease the levels of Adgrf1 may help to stop too much fat accumulating in the liver of human patients who are at risk of developing NAFLD. Further research is needed to confirm the effectiveness and safety of targeting Adgrf1 in humans and to develop suitable candidate drugs for the task.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Receptores Acoplados a Proteínas G , Animais , Camundongos , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
13.
Nucleic Acids Res ; 38(7): 2217-28, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20053728

RESUMO

The heterogeneous nuclear ribonucleoprotein Npl3p of budding yeast is a substrate of arginine methyltransferase Hmt1p, but the role of Hmt1p in regulating Npl3p's functions in transcription antitermination and elongation were unknown. We found that mutants lacking Hmt1p methyltransferase activity exhibit reduced recruitment of Npl3p, but elevated recruitment of a component of mRNA cleavage/termination factor CFI, to the activated GAL10-GAL7 locus. Consistent with this, hmt1 mutants displayed increased termination at the defective gal10-Delta56 terminator. Remarkably, hmt1Delta cells also exhibit diminished recruitment of elongation factor Tho2p and a reduced rate of transcription elongation in vivo. Importantly, the defects in Npl3p and Tho2p recruitment, antitermination and elongation in hmt1Delta cells all were mitigated by substitutions in Npl3p RGG repeats that functionally mimic arginine methylation by Hmt1p. Thus, Hmt1p promotes elongation and suppresses termination at cryptic terminators by methylating RGG repeats in Npl3p. As Hmt1p stimulates dissociation of Tho2p from an Npl3p-mRNP complex, it could act to recycle these elongation and antitermination factors back to sites of ongoing transcription.


Assuntos
Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Deleção de Genes , Metilação , Proteínas Nucleares/química , Proteína-Arginina N-Metiltransferases/genética , Proteínas de Ligação a RNA/química , Sequências Repetitivas de Aminoácidos , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
14.
PLoS Genet ; 5(10): e1000697, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19851444

RESUMO

Peroxiredoxins are a family of antioxidant enzymes critically involved in cellular defense and signaling. Particularly, yeast peroxiredoxin Tsa1p is thought to play a role in the maintenance of genome integrity, but the underlying mechanism is not understood. In this study, we took a genetic approach to investigate the cause of genome instability in tsa1Delta cells. Strong genetic interactions of TSA1 with DNA damage checkpoint components DUN1, SML1, and CRT1 were found when mutant cells were analyzed for either sensitivity to DNA damage or rate of spontaneous base substitutions. An elevation in intracellular dNTP production was observed in tsa1Delta cells. This was associated with constitutive activation of the DNA damage checkpoint as indicated by phosphorylation of Rad9/Rad53p, reduced steady-state amount of Sml1p, and induction of RNR and HUG1 genes. In addition, defects in the DNA damage checkpoint did not modulate intracellular level of reactive oxygen species, but suppressed the mutator phenotype of tsa1Delta cells. On the contrary, overexpression of RNR1 exacerbated this phenotype by increasing dNTP levels. Taken together, our findings uncover a new role of TSA1 in preventing the overproduction of dNTPs, which is a root cause of genome instability.


Assuntos
Dano ao DNA , Instabilidade Genômica , Nucleotídeos/metabolismo , Peroxidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Mutação , Peroxidases/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Cells ; 11(11)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681467

RESUMO

Peroxiredoxins are multifunctional enzymes that play a key role in protecting cells from stresses and maintaining the homeostasis of many cellular processes. Peroxiredoxins were firstly identified as antioxidant enzymes that can be found in all living organisms. Later studies demonstrated that peroxiredoxins also act as redox signaling regulators, chaperones, and proinflammatory factors and play important roles in oxidative defense, redox signaling, protein folding, cycle cell progression, DNA integrity, inflammation, and carcinogenesis. The versatility of peroxiredoxins is mainly based on their unique active center cysteine with a wide range of redox states and the ability to switch between low- and high-molecular-weight species for regulating their peroxidase and chaperone activities. Understanding the molecular mechanisms of peroxiredoxin in these processes will allow the development of new approaches to enhance longevity and to treat various cancers. In this article, we briefly review the history of peroxiredoxins, summarize recent advances in our understanding of peroxiredoxins in aging- and cancer-related biological processes, and discuss the future perspectives of using peroxiredoxins in disease diagnostics and treatments.


Assuntos
Neoplasias , Peroxirredoxinas , Antioxidantes/metabolismo , Humanos , Neoplasias/metabolismo , Oxirredução , Peroxidase/metabolismo , Peroxirredoxinas/metabolismo
16.
Theranostics ; 12(6): 2502-2518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401831

RESUMO

Rationale: Over-nutrition will lead to overexpression of PRMT1 but protein hypomethylation is observed in the liver of obese subjects. The dynamic alteration of the expression and methyltransferase activity of PRMT1 in the progression of fatty liver diseases remains elusive. Methods: We used recombinant adeno-associated virus-mediated gene delivery system to manipulate the hepatic PRMT1 expression level in diet-induced obese mice to investigate the role of PRMT1 in hepatic steatosis. We further utilized a cohort of obese humans with biopsy-proven nonalcoholic fatty liver disease to support our observations in mouse model. Results: We demonstrated that knockdown of PRMT1 promoted steatosis development in liver of high-fat diet (HFD) fed mice. Over-expression of wild-type PRMT1, but not methyltransferase-defective mutant PRMT1G80R, could alleviate diet-induced hepatic steatosis. The observation is conserved in the specimens of obese humans with biopsy-proven nonalcoholic fatty liver disease. Mechanistically, methyltransferase activity of PRMT1 was required to induce PGC-1α mRNA expression via recruitment of HNF-4α to the promoter of PGC-1α, and hence attenuated HFD-induced hepatic steatosis by enhancing PGC-1α-mediated fatty acid oxidation. Conclusions: Our results identify that activation of the PRMT1/HNF-4α/PGC-1α signaling is a potential therapeutic strategy for combating non-alcoholic fatty liver disease of obese subjects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Fígado/metabolismo , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
17.
Cell Mol Gastroenterol Hepatol ; 13(5): 1365-1391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093589

RESUMO

BACKGROUND & AIMS: CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice. METHODS: FACI was identified by reanalysis of existing transcriptomic data. Faci-/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome engineering. RNA sequencing was performed to identify differentially expressed genes in Faci-/- mice. Lipid accumulation in the villi was assessed by triglyceride measurement and Oil red O staining. In vitro fatty acid uptake assay was performed to verify in vivo findings. RESULTS: FACI expression was enriched in liver and intestine. FACI is a phospholipid-binding protein that localizes to plasma membrane and recycling endosomes. Hepatic transcription of Faci was regulated by not only CREB-H, but also nutrient-responsive transcription factors sterol regulatory element-binding protein 1 (SREBP1), hepatocyte nuclear factor 4α (HNF4α), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), and CREB, as well as fasting-related cyclic adenosine monophosphate (cAMP) signaling. Genetic knockout of Faci in mice showed an increase in intestinal fat absorption. In accordance with this, Faci deficiency aggravated high-fat diet-induced obesity, hyperlipidemia, steatosis, and other obesity-related metabolic dysfunction in mice. CONCLUSIONS: FACI is a novel CREB-H-induced protein. Genetic disruption of Faci in mice showed its inhibitory effect on fat absorption and obesity. Our findings shed light on a new target of CREB-H implicated in lipid homeostasis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fígado , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Fígado/metabolismo , Camundongos , Obesidade/metabolismo
18.
Front Pharmacol ; 12: 777395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35299724

RESUMO

Many clinical studies have suggested that glucagon-like peptide-1 receptor agonists (GLP-1RAs) have renoprotective properties by ameliorating albuminuria and increasing glomerular filtration rate in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) by lowering ectopic lipid accumulation in the kidney. However, the mechanism of GLP-1RAs was hitherto unknown. Here, we conducted an unbiased lipidomic analysis using ultra-high-performance liquid chromatography/electrospray ionization-quadrupole time-of-flight mass spectrometry (UHPLC/ESI-Q-TOF-MS) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to reveal the changes of lipid composition and distribution in the kidneys of high-fat diet-fed mice after treatment with a long-acting GLP-1RA dulaglutide for 4 weeks. Treatment of dulaglutide dramatically improved hyperglycemia and albuminuria, but there was no substantial improvement in dyslipidemia and ectopic lipid accumulation in the kidney as compared with controls. Intriguingly, treatment of dulaglutide increases the level of an essential phospholipid constituent of inner mitochondrial membrane cardiolipin at the cortex region of the kidneys by inducing the expression of key cardiolipin biosynthesis enzymes. Previous studies demonstrated that lowered renal cardiolipin level impairs kidney function via mitochondrial damage. Our untargeted lipidomic analysis presents evidence for a new mechanism of how GLP-1RAs stimulate mitochondrial bioenergetics via increasing cardiolipin level and provides new insights into the therapeutic potential of GLP-1RAs in mitochondrial-related diseases.

19.
Circ Res ; 102(3): 310-8, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18079412

RESUMO

Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, we show that ligand-receptor-mediated signaling promotes reactive oxygen species-dependent protein carbonylation. Treatment of pulmonary artery smooth muscle cells with endothelin-1 increased protein carbonyls. Carbonylation of the majority of proteins occurred transiently, suggesting that there is also a mechanism for decarbonylation induced by endothelin-1. Decarbonylation was suppressed by inhibition of thioredoxin reductase, and cellular thioredoxin was upregulated during the decarbonylation phase. These results indicate that endothelin-1 promotes oxidant signaling as well as thioredoxin-mediated reductive signaling to regulate carbonylation and decarbonylation mechanisms. In cells treated with endothelin receptor antagonists, hydrogen peroxide scavengers, or an iron chelator, we identified, via mass spectrometry, proteins that are carbonylated in a receptor- and Fenton reaction-dependent manner, including annexin A1, which promotes apoptosis and suppresses cell growth. Carbonylation of annexin A1 by endothelin-1 was followed by proteasome-dependent degradation of this protein. We propose that carbonylation and subsequent degradation of annexin A1 may play a role in endothelin-mediated cell growth and survival, important events in pulmonary vascular remodeling. Protein carbonylation in response to ligand-receptor interactions represents a novel mechanism in redox signaling.


Assuntos
Células Endoteliais/metabolismo , Endotelina-1/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Animais , Anexina A1/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Bovinos , Células Endoteliais/citologia , Endotelina-1/metabolismo , Sequestradores de Radicais Livres/farmacologia , Quelantes de Ferro/farmacologia , Masculino , Oxirredução/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Artéria Pulmonar/citologia , Ratos , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro/fisiologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
20.
Mol Cell Biol ; 27(18): 6520-31, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17636014

RESUMO

Nuclear cap binding complex (CBC) is recruited cotranscriptionally and stimulates spliceosome assembly on nascent mRNAs; however, its possible functions in regulating transcription elongation or termination were not well understood. We show that, while CBC appears to be dispensable for normal rates and processivity of elongation by RNA polymerase II (Pol II), it plays a direct role in preventing polyadenylation at weak termination sites. Similarly to Npl3p, with which it interacts, CBC suppresses the weak terminator of the gal10-Delta56 mutant allele by impeding recruitment of termination factors Pcf11p and Rna15p (subunits of cleavage factor IA [CF IA]) and does so without influencing Npl3p occupancy at the termination site. Importantly, deletion of CBC subunits or NPL3 also increases termination at a naturally occurring weak poly(A) site in the RNA14 coding sequences. We also show that CBC is most likely recruited directly to the cap of nascent transcripts rather than interacting first with transcriptional activators or the phosphorylated C-terminal domain of Pol II. Thus, our findings illuminate the mechanism of CBC recruitment and extend its function in Saccharomyces cerevisiae beyond mRNA splicing and degradation of aberrant nuclear mRNAs to include regulation of CF IA recruitment at poly(A) selection sites.


Assuntos
Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Modelos Biológicos , Ligação Proteica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA