Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 14892-14903, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37759171

RESUMO

Prenatal exposure to perfluorooctanesulfonate (PFOS) increases fetus' metabolic risk; however, the investigation of the underlying mechanism is limited. In this study, pregnant mice in the gestational days (GD, 4.5-17.5) were exposed to PFOS (0.3 and 3 µg/g of body weight). At GD 17.5, PFOS perturbed maternal lipid metabolism and upregulated metabolism-regulating hepatokines (Angptl4, Angptl8, and Selenop). Mass-spectrometry imaging and whole-genome bisulfite sequencing revealed, respectively, selective PFOS localization and deregulation of gene methylation in fetal livers, involved in inflammation, glucose, and fatty acid metabolism. PCR and Western blot analysis of lipid-laden fetal livers showed activation of AMPK signaling, accompanied by significant increases in the expression of glucose transporters (Glut2/4), hexose-phosphate sensors (Retsat and ChREBP), and the key glycolytic enzyme, pyruvate kinase (Pk) for glucose catabolism. Additionally, PFOS modulated the expression levels of PPARα and PPARγ downstream target genes, which simultaneously stimulated fatty acid oxidation (Cyp4a14, Acot, and Acox) and lipogenesis (Srebp1c, Acaca, and Fasn). Using human normal hepatocyte (MIHA) cells, the underlying mechanism of PFOS-elicited nuclear translocation of ChREBP, associated with a fatty acid synthesizing pathway, was revealed. Our finding implies that in utero PFOS exposure altered the epigenetic landscape associated with dysregulation of fetal liver metabolism, predisposing postnatal susceptibility to metabolic challenges.

2.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983052

RESUMO

Cadmium (Cd2+) exposure induces chronic kidney disease and renal cancers, which originate from injury and cancerization of renal tubular cells. Previous studies have shown that Cd2+ induced cytotoxicity by disrupting the intracellular Ca2+ homeostasis that is physically regulated by the endoplasmic reticulum (ER) Ca2+ store. However, the molecular mechanism of ER Ca2+ homeostasis in Cd2+-induced nephrotoxicity remains unclear. In this study, our results firstly revealed that the activation of calcium-sensing receptor (CaSR) by NPS R-467 could protect against Cd2+ exposure-induced cytotoxicity of mouse renal tubular cells (mRTEC) by restoring ER Ca2+ homeostasis through the ER Ca2+ reuptake channel sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Cd2+-induced ER stress and cell apoptosis were effectively abrogated by SERCA agonist CDN1163 and SERCA2 overexpression. In addition, in vivo, and in vitro results proved that Cd2+ reduced the expressions of SERCA2 and its activity regulator phosphorylation phospholamban (p-PLB) in renal tubular cells. Cd2+-induced SERCA2 degradation was suppressed by the treatment of proteasome inhibitor MG132, which suggested that Cd2+ reduced SERCA2 protein stability by promoting the proteasomal protein degradation pathway. These results suggested that SERCA2 played pivotal roles in Cd2+-induced ER Ca2+ imbalance and stress to contribute to apoptosis of renal tubular cells, and the proteasomal pathway was involved in regulating SERCA2 stability. Our results proposed a new therapeutic approach targeting SERCA2 and associated proteasome that might protect against Cd2+-induced cytotoxicity and renal injury.


Assuntos
Apoptose , Cádmio , Camundongos , Animais , Cádmio/metabolismo , Rim/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Estresse do Retículo Endoplasmático
3.
Ecotoxicol Environ Saf ; 207: 111480, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254385

RESUMO

Environmental or occupational exposure of Cadmium (Cd) is concerned to be a threat to human health. The kidney is main target of Cd accumulation, which increases the risk of renal cell carcinoma (RCC). In addition, low content of Cd had been determined in kidney cancer, however, the roles of presence of Cd in renal tumors progression are still unclear. The present study is proposed to determine the effect of low-dose Cd exposure on the renal cancer cells and aimed to clarify the underlying mechanisms. The cell viability, cytotoxicity, and the migratory effect of low-dose Cd on the renal cancer cells were detected. Moreover, the roles of reactive oxygen species (ROS), Ca2+, and cyclic AMP (cAMP)/protein kinase A (PKA)-cyclooxygenase2 (COX2) signaling, as well as COX2 catalytic product prostaglandin E2 (PGE2) on cell migration and invasion were identified. Our results suggested that low dose Cd exposure promoted migration of renal cancer Caki-1 cells, which was not dependent on Cd-induced ROS and intracellular Ca2+ levels. Cd exposure induced cAMP/PKA-COX2, which mediated cell migration and invasion, and decreased expressions of epithelial-mesenchymal transition (EMT) marker, E-cadherin, but increased expressions of N-cadherin and Vimentin. Moreover, Cd-induced secretion of PGE2 feedback on activation of cAMP/PKA-COX2 signaling, also promoted EMT, migration and invasion of renal cancer Caki-1 cells. This study might contribute to understanding of the mechanism of Cd-induce progression of renal cancer and future studies on the prevention and therapy of renal cell carcinomas.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Transição Epitelial-Mesenquimal/fisiologia , Antígenos CD , Caderinas/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Renais , Transdução de Sinais/efeitos dos fármacos , Vimentina/metabolismo
4.
BMC Genomics ; 21(1): 208, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131732

RESUMO

BACKGROUND: Gills of euryhaline fishes possess great physiological and structural plasticity to adapt to large changes in external osmolality and to participate in ion uptake/excretion, which is essential for the re-establishment of fluid and electrolyte homeostasis. The osmoregulatory plasticity of gills provides an excellent model to study the role of microRNAs (miRs) in adaptive osmotic responses. The present study is to characterize an ex-vivo gill filament culture and using omics approach, to decipher the interaction between tonicity-responsive miRs and gene targets, in orchestrating the osmotic stress-induced responses. RESULTS: Ex-vivo gill filament culture was exposed to Leibovitz's L-15 medium (300 mOsmol l- 1) or the medium with an adjusted osmolality of 600 mOsmol l- 1 for 4, 8 and 24 h. Hypertonic responsive genes, including osmotic stress transcriptional factor, Na+/Cl--taurine transporter, Na+/H+ exchange regulatory cofactor, cystic fibrosis transmembrane regulator, inward rectifying K+ channel, Na+/K+-ATPase, and calcium-transporting ATPase were significantly upregulated, while the hypo-osmotic gene, V-type proton ATPase was downregulated. The data illustrated that the ex-vivo gill filament culture exhibited distinctive responses to hyperosmotic challenge. In the hyperosmotic treatment, four key factors (i.e. drosha RNase III endonuclease, exportin-5, dicer ribonuclease III and argonaute-2) involved in miR biogenesis were dysregulated (P < 0.05). Transcriptome and miR-sequencing of gill filament samples at 4 and 8 h were conducted and two downregulated miRs, miR-29b-3p and miR-200b-3p were identified. An inhibition of miR-29b-3p and miR-200b-3p in primary gill cell culture led to an upregulation of 100 and 93 gene transcripts, respectively. Commonly upregulated gene transcripts from the hyperosmotic experiments and miR-inhibition studies, were overlaid, in which two miR-29b-3p target-genes [Krueppel-like factor 4 (klf4), Homeobox protein Meis2] and one miR-200b-3p target-gene (slc17a5) were identified. Integrated miR-mRNA-omics analysis revealed the specific binding of miR-29b-3p on Klf4 and miR-200b-3p on slc17a5. The target-genes are known to regulate differentiation of gill ionocytes and cellular osmolality. CONCLUSIONS: In this study, we have characterized the hypo-osmoregulatory responses and unraveled the modulation of miR-biogenesis factors/the dysregulation of miRs, using ex-vivo gill filament culture. MicroRNA-messenger RNA interactome analysis of miR-29b-3p and miR-200b-3p revealed the gene targets are essential for osmotic stress responses.


Assuntos
Anguilla/genética , Brânquias/citologia , MicroRNAs/genética , RNA Mensageiro/genética , Anguilla/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Brânquias/química , MicroRNAs/metabolismo , Pressão Osmótica , RNA Mensageiro/metabolismo
5.
Environ Sci Technol ; 54(6): 3465-3475, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32119782

RESUMO

Perfluoroalkyl chemicals induce male reproductive toxicity. Current evidence showed the effects of the chemical exposure on the deterioration of testicular functions, and reduction in epididymal sperm counts. Previous studies showed that PFOA and PFOS displayed a high correlation with each other in seminal plasma levels, but induced different effects on semen variables. In this study, we focused on the comparative toxicity analysis of PFOA and PFOS, using a rat primary Sertoli cell model. Our transcriptomic data showed that PFOA and PFOS treatments (40 µM) perturbed global gene expression. While PFOS induced higher toxicity in affecting cytoskeleton signaling, Sertoli cell-cell junction, and inflammation, underlined by Ingenuity pathway analysis. Immunocytochemical staining revealed that PFOS treatment (40 and 80 µM) induced truncated actin filament and disorganized bundled configuration in the cell cytoplasm. Moreover, disorganized distribution of N-cadherin (N-cad) and ß-catenin (ß-cat), and defragmentation of ZO-1 at the Sertoli cell-cell interface was evident. At 80 µM of PFOS, cytoplasmic distribution of N-cad, ß-cat, and ZO-1 were observed. We then examined whether resveratrol, a polyphenol antioxidant, was able to protect the cells from PFOS toxicity. The pretreatment of Sertoli cells with 10 µM resveratrol prevented the formation of truncated actin filament and dis-localization of ß-cat. Western blot analysis showed that Res pretreatment increased the levels of basal ES proteins (N-cad and ß-cat), tight junction proteins (ZO-1 and occludin), and gap junction protein, versus control.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Caderinas , Caprilatos , Masculino , Ratos , Células de Sertoli
6.
Environ Sci Technol ; 54(24): 16050-16061, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33258594

RESUMO

Perfluorooctane sulfonate (PFOS) is a metabolic-disrupting chemical. There is a strong association between maternal and cord blood PFOS concentrations, affecting metabolism in early life. However, the underlying effects have not been fully elucidated. In this study, using the maternal-fetal model, we investigated the impact of gestational PFOS exposure on the placental structure and nutrient transport. Pregnant mice were oral gavaged with PFOS (1 or 3 µg PFOS/g body weight) from gestational day (GD) 4.5 until GD 17.5. Our data showed a significant reduction in fetal body weight at high dose exposure. There were no noticeable changes in placental weights and the relative areas of junctional and labyrinth zones among the control and exposed groups. However, a placental nutrient transport assay showed a significant reduction in maternal-fetal transport of the glucose and amino acid analogues. Western blot analysis showed a significant decrease in the expression levels of placental SNAT4 upon PFOS exposure. Moreover, in the high-dose exposed group, placenta and fetal livers were found to have significantly higher corticosterone levels, a negative regulator of fetal growth. The perturbation in the placental transport function and corticosterone levels accounted for the PFOS-induced reduction of fetal body weights.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Feminino , Peso Fetal , Fluorocarbonos/toxicidade , Humanos , Exposição Materna/efeitos adversos , Camundongos , Placenta , Gravidez
7.
Fish Shellfish Immunol ; 73: 288-296, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29269288

RESUMO

The changes in ambient salinity influence ion and water homeostasis, hormones secretion, and immune response in fish gills. The physiological functions of hormones and ion transporters in the regulation of gill-osmoregulation have been widely studied, however the modulation of immune response under salinity changes is not determined. Using transcriptome sequencing, we obtained a comprehensive profile of osmo-responsive genes in gill cells of Japanese eel (Anguilla japonica). Herein, we applied bioinformatics analysis to identify the immune-related genes that were significantly higher expressed in gill pavement cells (PVCs) and mitochondrial-rich cells (MRCs) in freshwater (FW) than seawater (SW) adapted fish. We validated the data using the real-time qPCR, which showed a high correlation between the RNA-seq and real-time qPCR data. In addition, the immunohistochemistry results confirmed the changes of the expression of selected immune-related genes, including C-reactive protein (CRP) in PVCs, toll-like receptor 2 (TLR2) in MRCs and interleukin-1 receptor type 2 (IL-1R2) in both PVCs and MRCs. Collectively our results demonstrated that those immune-related genes respond to salinity changes, and might trigger related special signaling pathways and network. This study provides new insights into the impacts of ambient salinity changes on adaptive immune response in fish gill cells.


Assuntos
Aclimatação , Imunidade Adaptativa/genética , Anguilla/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Salinidade , Anguilla/imunologia , Anguilla/metabolismo , Animais , Biologia Computacional , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Brânquias/imunologia , Brânquias/metabolismo , Imuno-Histoquímica/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária
8.
Biochim Biophys Acta ; 1862(6): 1147-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26972049

RESUMO

Treacher Collins Syndrome (TCS) is a rare congenital birth disorder (1 in 50,000 live births) characterized by severe craniofacial defects, including the downward slanting palpebral fissures, hypoplasia of the facial bones, and cleft palate (CP). Over 90% of patients with TCS have a mutation in the TCOF1 gene. However, some patients exhibit mutations in two new causative genes, POLR1C and POLR1D, which encode subunits of RNA polymerases I and III, that affect ribosome biogenesis. In this study, we examine the role of POLR1C in TCS using zebrafish as a model system. Our data confirmed that polr1c is highly expressed in the facial region, and dysfunction of this gene by knockdown or knock-out resulted in mis-expression of neural crest cells during early development that leads to TCS phenotype. Next generation sequencing and bioinformatics analysis of the polr1c mutants further demonstrated the up-regulated p53 pathway and predicted skeletal disorders. Lastly, we partially rescued the TCS facial phenotype in the background of p53 mutants, which supported the hypothesis that POLR1C-dependent type 3 TCS is associated with the p53 pathway.


Assuntos
Disostose Mandibulofacial/genética , Disostose Mandibulofacial/patologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Mutação , Crista Neural/metabolismo , Crista Neural/patologia , Proteína Supressora de Tumor p53/genética , Peixe-Zebra/embriologia
9.
Environ Sci Technol ; 51(19): 11390-11400, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28880546

RESUMO

In this study, transcriptomic and Ingenuity Pathway Analysis (IPA) underlined that an ex-vivo TCDD treatment (0.1 nM) stimulated insulin-release in mouse pancreatic islets via the effect on the Akt-mTOR-p70S6K, AMPK and ERK1/2 pathways. Functional studies using both ex-vivo islets and the mouse ß-cell-line (Min-6) validated the stimulatory effects of TCDD (0.1 and 1 nM) on basal-insulin secretion. At 0.1 nM TCDD treatment on Min-6, Western blot analysis showed activation of ERK1/2 and decreased expression of pyruvate dehydrogenase kinase (PDK). A reduction of PDK expression is associated with an increase of pyruvate dehydrogenase flux. This observation was supported by the detection of significantly higher cellular ATP levels, an increase of glucose-stimulated-insulin-secretion (GSIS), and an inhibition of the AMPK pathway. At 1 nM TCDD treatment on Min-6, significant inhibitions of the Akt-mTOR pathway, cellular ATP production, and GSIS were evident. The experimental studies in Min-6 supported the IPA of transcriptomic data in pancreatic islets. Collectively, TCDD treatment caused an elevated basal-insulin release in both islets and ß-cell cultures. Moreover, our data revealed that the modulation of the Akt-mTOR-p70S6K, AMPK and ERK1/2 pathways might be an important component of the mechanism for the TCDD-perturbing effects on ATP production in ß-cells in affecting insulin secretion.


Assuntos
Dioxinas/toxicidade , Poluentes Ambientais/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Animais , Glucose , Insulina , Ilhotas Pancreáticas , Camundongos
10.
Environ Sci Technol ; 51(15): 8782-8794, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654245

RESUMO

Transcriptomic and LC-MS/MS-based targeted lipidomic analyses were conducted to identify the effects of in utero PFOS exposure on neonatal testes and its relation to testicular dysfunction in adult offspring. Pregnant mice were orally administered 0.3 and 3 µg PFOS/g body weight until term. Neonatal testes (P1) were collected for the detection of PFOS, and were subjected to omics study. Integrated pathway analyses using DAVID, KEGG, and IPA underlined the effects of PFOS exposure on lipid metabolism, oxidative stress and cell junction signaling in testes. LC-MS/MS analysis showed that the levels of adrenic acid and docosahexaenoic acid (DHA) in testes were significantly reduced in the PFOS treatment groups. A significant linear decreasing trend in eicosapentaenoic acid and DHA with PFOS concentrations was observed. Moreover, LOX-mediated 5-hydroxyeicosatetraenoic acids (HETE) and 15-HETE from arachidonic acid in the testes were significantly elevated and a linear increasing trend of 15-HETE concentrations was detected with doses of PFOS. The perturbations of lipid mediators suggested that PFOS has potential negative impacts on testicular functions. Postnatal analysis of male offspring at P63 showed significant reductions in serum testosterone and epididymal sperm count. This study sheds light into the as yet unrevealed action of PFOS on lipid mediators in affecting testicular functions.


Assuntos
Fluorocarbonos/toxicidade , Testículo/metabolismo , Poluentes Químicos da Água/toxicidade , Ácidos Alcanossulfônicos , Animais , Feminino , Ácidos Hidroxieicosatetraenoicos/análise , Masculino , Camundongos , Gravidez , Contagem de Espermatozoides , Espectrometria de Massas em Tandem , Transcriptoma
11.
BMC Genomics ; 16: 1072, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26678671

RESUMO

BACKGROUND: Homeostasis of ions and water is important for the maintenance of cellular functions. The regulation of the homeostasis is particularly important in euryhaline fish that migrate between freshwater (FW) and seawater (SW) environments. The fish gill, the major tissue that forms an interface separating the extracellular fluids and external water environment, has an effective transport system to maintain and regulate a constant body osmolality. In fish gills, the two major epithelial cells, pavement cells (PVCs) and mitochondria-rich cells (MRCs), are known to play key and complementary roles in ion transport at the interface. Discovering the robust mechanisms underlying the two cell types' response to osmotic stress would benefit our understanding of the fundamental mechanism allowing PVCs and MRCs to handle osmotic stress. Owing to the limited genomic data available on estuarine species, existing knowledge in this area is slim. In this study, transcriptome analyses were conducted using PVCs and MRCs isolated from Japanese eels adapted to FW or SW environments to provide a genome-wide molecular study to unravel the fundamental processes at work. RESULTS: The study identified more than 12,000 transcripts in the gill cells. Interestingly, remarkable differential expressed genes (DEGs) were identified in PVCs (970 transcripts) instead of MRCs (400 transcripts) in gills of fish adapted to FW or SW. Since PVCs cover more than 90 % of the gill epithelial surface, the greater change in gene expression patterns in PVCs in response to external osmolality is anticipated. In the integrity pathway analysis, 19 common biological functions were identified in PVCs and MRCs. In the enriched signaling pathways analysis, most pathways differed between PVCs and MRCs; 14 enriched pathways were identified in PVCs and 12 in MRCs. The results suggest that the osmoregulatory responses in PVCs and MRCs are cell-type specific, which supports the complementary functions of the cells in osmoregulation. CONCLUSIONS: This is the first study to provide transcriptomic analysis of PVCs and MRCs in gills of eels adapted to FW or SW environments. It describes the cell-type specific transcriptomic network in different tonicity. The findings consolidate the known osmoregulatory pathways and provide molecular insight in osmoregulation. The presented data will be useful for researchers to select their targets for further studies.


Assuntos
Adaptação Biológica/genética , Perfilação da Expressão Gênica , Brânquias/metabolismo , Mitocôndrias/metabolismo , Osmorregulação/genética , Transcriptoma , Animais , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Pressão Osmótica , Transdução de Sinais
12.
BMC Genomics ; 16: 135, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25765076

RESUMO

BACKGROUND: The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level. RESULTS: More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma. CONCLUSIONS: Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Oryzias/genética , Animais , Organismos Aquáticos/genética , Água Doce , Regulação da Expressão Gênica/genética , Dados de Sequência Molecular , Especificidade de Órgãos/genética
13.
Biochim Biophys Acta ; 1830(10): 4584-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23665588

RESUMO

BACKGROUND: Osmotic stress transcription factor 1/transforming growth factor-ß-stimulated clone 22 domain 3 (Ostf1/Tsc22d3) is a transcription factor that plays an osmoregulatory role in euryhaline fishes. Its mRNA and protein levels are up-regulated under hyperosmotic stress. However, its osmoregulatory and developmental functions have not been studied in any stenohaline freshwater fishes. Zebrafish is an excellent model to perform such study to unfold the functional role of Tsc22d3. METHODS: We identified the zebrafish Tsc22d3 and performed knockdown studies using morpholino antisense oligonucleotide (MO). RESULTS: Zebrafish Tsc22d3 did not response to hypertonic stress and ts22d3 knockdown or overexpression by injecting MO or capped RNA did not change the transcriptional levels of any of the known ionocyte markers. To reveal the unknown function of zebrafish Tsc22d3, we performed several in situ molecular marker studies on tsc22d3 morphants and found that Tsc22d3 plays multi-functional roles in dorsoventral (DV) patterning, segmentation, and brain development. We then aimed to identify the mechanism of Tsc22d3 in the earliest stages of DV patterning. Our results demonstrated that tsc22d3 is a ventralizing gene that can stimulate the transcription of bone morphogenetic protein 4 (bmp4) and, thus, has a positive effect on the Bmp signaling pathway. Furthermore, we showed that Tsc22d3 interacts with deubiquitylating enzymes, ubiquitin-specific protease 15 (Usp15) and ovarian tumor domain containing protein 4 (Otud4). In addition, the interruption of Bmp4 signaling by double knockdown of usp15 and otud4 reduced the ventralized effects in tsc22d3-overexpressing embryos. CONCLUSIONS: This is the first study to identify new developmental functions of Tsc22d3 in zebrafish. GENERAL SIGNIFICANCE: Zebrafish tsc22d3 is a ventralizing gene and plays a role in early embryogenesis.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fator de Crescimento Transformador beta/química , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
14.
J Proteome Res ; 12(11): 5271-80, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24088062

RESUMO

The apple snail Pomacea canaliculata is a freshwater gastropod with a remarkable ability to withstand seasonal or unpredictable dry conditions by entering estivation. Studies of P. canaliculata using conventional biochemical and the individual gene approaches have revealed the expressional changes of several enzymes and antioxidative genes in response to estivation and arousal. In this study, we applied iTRAQ-coupled two-dimensional LC-MS/MS to identify and quantify the global protein expression during the estivation and arousal of P. canaliculata. A total of 1040 proteins were identified, among which 701 proteins were quantified and compared across four treatments (i.e., control, active snails; short-term estivation, 3 days of exposure to air; prolonged estivation, 30 days of exposure to air; and arousal, 6 h after resubmergence in water) revealing 53 differentially expressed proteins. A comparison of protein expression profiles across treatments indicated that the proteome of this species was very insensitive to initial estivation, with only 9 proteins differentially expressed as compared with the control. Among the 9 proteins, the up-regulations of two immune related proteins indicated the initial immune response to the detection of stress cues. Prolonged estivation resulted in many more differentially expressed proteins (47 compared with short-term estivation treatment), among which 16 were down-regulated and 31 were up-regulated. These differentially expressed proteins have provided the first global picture of a shift in energy usage from glucose to lipid, prevention of protein degradation and elevation of oxidative defense, and production of purine for uric acid production to remove toxic ammonia during prolonged estivation in a freshwater snail. From prolonged estivation to arousal, only 6 proteins changed their expression level, indicating that access to water and food alone is not a necessary condition to reactivate whole-sale protein expression. A comparison with hibernation and diapause revealed many similar molecular mechanisms of hypometabolic regulation across the animal kingdom.


Assuntos
Estivação/genética , Regulação da Expressão Gênica/genética , Proteoma/genética , Caramujos/genética , Caramujos/fisiologia , Animais , Cromatografia Líquida , Biologia Computacional , Estivação/fisiologia , Regulação da Expressão Gênica/fisiologia , Hong Kong , Proteoma/metabolismo , Proteômica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Caramujos/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma
15.
Front Endocrinol (Lausanne) ; 14: 1302965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075064

RESUMO

Introduction: Multiple factors can contribute to sub-fecundity, including genetics, lifestyle, and environmental contaminants. PFASs are characterized as "forever chemicals" due to their ubiquitous contamination and their persistence in the environment, wildlife, and humans. Numerous studies have demonstrated that PFAS exposure adversely affects multiple bodily functions, including liver metabolism and gonadal function. It is unclear, however, how the disruption of hepatic fatty acid metabolism affects testicular function. Methods: In this study, male mice were administered 0.3 and 3 µg/g body weight of PFOS for 21 days. Results: Our data showed that PFOS exposure caused hepatic steatosis, as evidenced by significant increases in triglyceride levels, expression of ATP-citrate lyase, and fatty acid synthase, as well as fasting insulin levels. PFOS perturbed the expression levels of hepatokines, of which fibroblast growth factor-21 (Fgf-21), leukocyte cell-derived chemotaxin-2 (Lect-2), and retinol-binding protein-4 (Rbp-4) were significantly reduced, whereas angiopoietin-like 4 (Angptl4) was noticeably increased. While Rbp-4 and Fgf-21 are known to contribute to spermatogenesis and testosterone synthesis. In PFOS-exposed groups, testicular ATP, and testosterone decreased significantly with a significant increase in the expression of peroxisome proliferator-activated receptor-coactivator 1α. Mass spectrophotometry imaging revealed the localization of PFOS in testes, along with significant increases in fatty acid metabolites. These included arachidonic acid, dihomo-α-linolenic acid, dihomo-γ-linolenic acid, oxidized ceramide, diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, which are associated with inflammation and post-testicular causes of infertility. Discussion: This study revealed potential links between PFOS-elicited changes in hepatic metabolism and their impacts on testicular biology. This study provides insights into alternative targets elicited by PFOS that can be used to develop diagnostic and therapeutic strategies for improving testicular dysfunction.


Assuntos
Ácidos Graxos , Testículo , Humanos , Camundongos , Masculino , Animais , Testículo/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Testosterona/metabolismo , Trifosfato de Adenosina/metabolismo
16.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798563

RESUMO

Stanniocalcin-1 (STC1) is a hypocalcemic hormone originally identified in bony fishes. The mammalian homolog is found to be involved in inflammation and carcinogenesis, among other physiological functions. In this study, we used the TriCEPS-based ligand-receptor methodology to identify the putative binding proteins of human STC1 (hSTC1) in the human leukemia monocytic cell line, ThP-1. LC-MS/MS analysis of peptides from shortlisted hSTC1-binding proteins detected 32 peptides that belong to IGF2/MPRI. Surface plasmon resonance assay demonstrated that hSTC1 binds to immobilized IGF2R/MPRI with high affinity (10-20 nM) and capacity (Rmax 70-100%). The receptor binding data are comparable with those of (CREG) cellular repressor of E1A-stimulated gene a known ligand of IGF2R/MPRI, with Rmax of 75-80% and affinity values of 1-2 nM. The surface plasmon resonance competitive assays showed CREG competed with hSTC1 in binding to IGF2R/MPRI. The biological effects of hSTC1 on ThP-1 cells were demonstrated via IGF2R/MPRI to significantly reduce secreted levels of IL-1ß. This is the first study to reveal the high-affinity binding of hSTC1 to the membrane receptor IGF2R/MPRI.


Assuntos
Glicoproteínas , Proteínas de Membrana , Espectrometria de Massas em Tandem , Cromatografia Líquida , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células THP-1
17.
Front Endocrinol (Lausanne) ; 13: 886085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813649

RESUMO

Male reproductive function is key to the continuation of species and is under sophisticated regulation, challenged by various stressors including inflammation. In the lipopolysaccharide (LPS) intraperitoneal injection-induced acute systemic inflammation, male fecundity was compromised with decreased testosterone level, damaged spermatogenesis, and downregulations of testicular gene expression levels involved in steroidogenesis regulation and blood-testis barrier. It is also noteworthy that the testis is more sensitive to acute stress caused by LPS-induced systemic inflammation. LPS treatment resulted in lower testicular gene expression levels of steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, and cytochrome P450 family 11 subfamily B member 1 after LPS treatment, while no such decrease was found in the adrenal gland. In parallel to the significant decreases in testicular intercellular adhesion molecule 1, tight junction protein 1, and gap junction alpha-1 protein gene expression with LPS treatment, no decrease was found in the epididymis. In the brain, LPS treatment caused higher medial preoptic area (mPOA) activation in the hypothalamus, which is accompanied by elevated blood follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, suggesting a disturbed hypothalamic-pituitary-gonad axis function. Besides mPOA, brain c-fos mapping and quantitative analysis demonstrated a broad activation of brain nuclei by LPS, including the anterior cingulate cortex, lateral septum, paraventricular nucleus of the hypothalamus, basolateral amygdala, ventral tegmental area, lateral habenular nucleus, locus coeruleus, Barrington's nucleus, and the nucleus of the solitary tract, accompanied by abnormal animal behavior. Our data showed that LPS-induced inflammation caused not only local testicular damage but also a systemic disturbance at the brain-testis axis level.


Assuntos
Lipopolissacarídeos , Área Pré-Óptica , Animais , Hormônio Foliculoestimulante , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Hormônio Luteinizante/metabolismo , Masculino , Área Pré-Óptica/metabolismo
18.
Sci Total Environ ; 844: 156881, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35753445

RESUMO

Previous studies have examined the effects of perfluorooctanesulfonic acid (PFOS) on disruption of the blood-testis barrier and spermatogenesis. Sertoli and Leydig cells were perturbed, resulting in a decrease in testosterone levels and sperm counts. However, the effects of PFOS on male fecundity are not limited to the testes. In this study, we demonstrated that oral PFOS exposure (1 µg/g BW and 5 µg/g BW) decreased the function of the Luteinizing hormone (LH)/Luteinizing hormone receptor (LHr) and decreased epididymal sperm motility. Consistently, testicular transcriptome analysis revealed that PFOS altered the expression of a cluster of genes associated with sperm motility and steroidogenesis. In mice exposed to PFOS, c-Fos immunostaining showed activation of the lateral septal nucleus (LS), paraventricular thalamus (PVT), locus coeruleus (LC), which are known to be related to anxiety-like behaviors. Metabolomic analyses of the hypothalamus revealed that exposure to PFOS perturbed the translation of proteins, as well as the biosynthesis of neurotransmitters and neuromodulators. Altogether, the activation of brain nuclei, shift of hypothalamic metabolome, and reduction of LH/LHr circuit resulted from PFOS exposure suggested the toxicant's systematic effects on male reproduction.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Ácidos Alcanossulfônicos , Animais , Fertilidade , Fluorocarbonos , Hipotálamo/metabolismo , Masculino , Camundongos , Testículo , Testosterona/metabolismo
19.
Chemosphere ; 308(Pt 1): 136196, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36041519

RESUMO

We examined the changes in hepatic metabolic gene expression and gut microbiota of offspring exposed to PFOS in-utero. At GD17.5, our data showed that PFOS exposure decreased fetal bodyweights and hepatic metabolic gene expressions but increased relative liver mass and lipid accumulation. At PND21, in-utero high-dose PFOS-exposed offspring exhibited significantly greater bodyweight (catch-up-growth), associated with significant induction of hepatic metabolic gene expression. In addition, 16SrRNA-sequencing of the cecal samples revealed an increase in carbohydrate catabolism but a reduction in microbial polysaccharide synthesis and short-chain fatty acid (SCFA) metabolism. From PND21-80, a postnatal diet-challenge for the offspring was conducted. At PND80 under a normal diet, in-utero high-dose PFOS-exposed offspring maintained the growth "catch-up" effect. In contrast, in a high-fat-diet, the bodyweight of in-utero high-dose PFOS-exposed adult offspring were significantly lesser than the corresponding low-dose and control groups. Even though in the high-fat-diet, the in-utero PFOS-exposed adult offspring showed significant upregulation of hepatic metabolic genes, the lower bodyweight suggests that they had difficulty utilizing high-fat nutrients. Noteworthy, the metagenomic data showed a significant reduction in the biosynthesis of microbial polysaccharides, vitamin B, and SCFAs in the PFOS-exposed adult offspring. Furthermore, the observed effects were significantly reduced in the PFOS-exposed adult offspring with the high-fat diet but supplemented with sucrose. Our study demonstrated that in-utero PFOS exposure caused inefficient fat metabolism and increased the risk of hepatic steatosis in offspring.


Assuntos
Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal , Peso Corporal , Carboidratos , Dieta Hiperlipídica , Ácidos Graxos Voláteis/metabolismo , Feminino , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Polissacarídeos/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sacarose/metabolismo , Vitaminas/metabolismo , Vitaminas/farmacologia
20.
Gigascience ; 112022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36480030

RESUMO

Japanese eels (Anguilla japonica) are commercially important species, harvested extensively for food. Currently, this and related species (American and European eels) are challenging to breed on a commercial basis. As a result, the wild stock is used for aquaculture. Moreover, climate change, habitat loss, water pollution, and altered ocean currents affect eel populations negatively. Accordingly, the International Union for Conservation of Nature lists Japanese eels as endangered and on its red list. Here we presented a high-quality genome assembly for Japanese eels and demonstrated that large chromosome reorganizations occurred in the events of third-round whole-genome duplications (3R-WRDs). Several chromosomal fusions and fissions have reduced the ancestral protochromosomal number of 25 to 19 in the Anguilla lineage. A phylogenetic analysis of the expanded gene families showed that the olfactory receptors (group δ and ζ genes) and voltage-gated Ca2+ channels expanded significantly. Both gene families are crucial for olfaction and neurophysiology. Additional tandem and proximal duplications occurred following 3R-WGD to acquire immune-related genes for an adaptive advantage against various pathogens. The Japanese eel assembly presented here can be used to study other Anguilla species relating to evolution and conservation.


Assuntos
Duplicação Gênica , Cromossomos/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA