Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306481

RESUMO

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Células Endoteliais , Proteoma , Peptídeos
2.
Nature ; 569(7755): 236-240, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043745

RESUMO

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.


Assuntos
Aterosclerose/patologia , Morte Celular , Membrana Celular/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Porosidade , Animais , Artérias/patologia , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Histonas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/patologia , Neutrófilos/citologia , Ligação Proteica/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064082

RESUMO

Work on surface sensing in bacterial biofilms has focused on how cells transduce sensory input into cyclic diguanylate (c-di-GMP) signaling, low and high levels of which generally correlate with high-motility planktonic cells and low-motility biofilm cells, respectively. Using Granger causal inference methods, however, we find that single-cell c-di-GMP increases are not sufficient to imply surface commitment. Tracking entire lineages of cells from the progenitor cell onward reveals that c-di-GMP levels can exhibit increases but also undergo oscillations that can propagate across 10 to 20 generations, thereby encoding more complex instructions for community behavior. Principal component and factor analysis of lineage c-di-GMP data shows that surface commitment behavior correlates with three statistically independent composite features, which roughly correspond to mean c-di-GMP levels, c-di-GMP oscillation period, and surface motility. Surface commitment in young biofilms does not correlate to c-di-GMP increases alone but also to the emergence of high-frequency and small-amplitude modulation of elevated c-di-GMP signal along a lineage of cells. Using this framework, we dissect how increasing or decreasing signal transduction from wild-type levels, by varying the interaction strength between PilO, a component of a principal surface sensing appendage system, and SadC, a key hub diguanylate cyclase that synthesizes c-di-GMP, impacts frequency and amplitude modulation of c-di-GMP signals and cooperative surface commitment.


Assuntos
Fenômenos Fisiológicos Bacterianos , GMP Cíclico/análogos & derivados , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Mutação , Ligação Proteica , Pseudomonas aeruginosa/fisiologia
4.
PLoS Pathog ; 18(8): e1010742, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35972973

RESUMO

Deposition of human amyloids is associated with complex human diseases such as Alzheimer's and Parkinson's. Amyloid proteins are also produced by bacteria. The bacterial amyloid curli, found in the extracellular matrix of both commensal and pathogenic enteric bacterial biofilms, forms complexes with extracellular DNA, and recognition of these complexes by the host immune system may initiate an autoimmune response. Here, we isolated early intermediate, intermediate, and mature curli fibrils that form throughout the biofilm development and investigated the structural and pathogenic properties of each. Early intermediate aggregates were smaller than intermediate and mature curli fibrils, and circular dichroism, tryptophan, and thioflavin T analyses confirmed the establishment of a beta-sheet secondary structure as the curli conformations matured. Intermediate and mature curli fibrils were more immune stimulatory than early intermediate fibrils in vitro. The intermediate curli was cytotoxic to macrophages independent of Toll-like receptor 2. Mature curli fibrils had the highest DNA content and induced the highest levels of Isg15 expression and TNFα production in macrophages. In mice, mature curli fibrils induced the highest levels of anti-double-stranded DNA autoantibodies. The levels of autoantibodies were higher in autoimmune-prone NZBWxF/1 mice than wild-type C57BL/6 mice. Chronic exposure to all curli forms led to significant histopathological changes and synovial proliferation in the joints of autoimmune-prone mice; mature curli was the most detrimental. In conclusion, curli fibrils, generated during biofilm formation, cause pathogenic autoimmune responses that are stronger when curli complexes contain higher levels of DNA and in mice predisposed to autoimmunity.


Assuntos
Interferon Tipo I , Salmonella typhimurium , Amiloide/genética , Animais , Autoanticorpos , Autoimunidade , Proteínas de Bactérias/metabolismo , Biofilmes , DNA/metabolismo , Humanos , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhimurium/genética
5.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168081

RESUMO

To initiate biofilm formation, it is critical for bacteria to sense a surface and respond precisely to activate downstream components of the biofilm program. Type 4 pili (T4P) and increasing levels of c-di-GMP have been shown to be important for surface sensing and biofilm formation, respectively; however, mechanisms important in modulating the levels of this dinucleotide molecule to define a precise output response are unknown. Here, using macroscopic bulk assays and single-cell tracking analyses of Pseudomonas aeruginosa, we uncover a role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two-hybrid and bimolecular fluorescence complementation assays, combined with genetic studies, are consistent with a model whereby PilO interacts with SadC and that the PilO-SadC interaction inhibits SadC's activity, resulting in decreased biofilm formation and increased motility. Using single-cell tracking, we monitor both the mean c-di-GMP and the variance of this dinucleotide in individual cells. Mutations that increase PilO-SadC interaction modestly, but significantly, decrease both the average and variance in c-di-GMP levels on a cell-by-cell basis, while mutants that disrupt PilO-SadC interaction increase the mean and variance of c-di-GMP levels. This work is consistent with a model wherein P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this dinucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/fisiologia , Motivos de Aminoácidos , Sequência Conservada , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Mutação/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Análise de Célula Única , Sistemas de Secreção Tipo IV
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372152

RESUMO

Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Sequência de Aminoácidos/genética , Animais , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Simulação por Computador , Bases de Dados Genéticas , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neuropeptídeos/metabolismo , Filogenia , Transdução de Sinais/fisiologia
7.
J Biol Chem ; 298(12): 102620, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272645

RESUMO

Fission protein 1 (FIS1) and dynamin-related protein 1 (DRP1) were initially described as being evolutionarily conserved for mitochondrial fission, yet in humans the role of FIS1 in this process is unclear and disputed by many. In budding yeast where Fis1p helps to recruit the DRP1 ortholog from the cytoplasm to mitochondria for fission, an N-terminal "arm" of Fis1p is required for function. The yeast Fis1p arm interacts intramolecularly with a conserved tetratricopeptide repeat core and governs in vitro interactions with yeast DRP1. In human FIS1, NMR and X-ray structures show different arm conformations, but its importance for human DRP1 recruitment is unknown. Here, we use molecular dynamics simulations and comparisons to experimental NMR chemical shifts to show the human FIS1 arm can adopt an intramolecular conformation akin to that observed with yeast Fis1p. This finding is further supported through intrinsic tryptophan fluorescence and NMR experiments on human FIS1 with and without the arm. Using NMR, we observed the human FIS1 arm is also sensitive to environmental changes. We reveal the importance of these findings in cellular studies where removal of the FIS1 arm reduces DRP1 recruitment and mitochondrial fission similar to the yeast system. Moreover, we determined that expression of mitophagy adapter TBC1D15 can partially rescue arm-less FIS1 in a manner reminiscent of expression of the adapter Mdv1p in yeast. These findings point to conserved features of FIS1 important for its activity in mitochondrial morphology. More generally, other tetratricopeptide repeat-containing proteins are flanked by disordered arms/tails, suggesting possible common regulatory mechanisms.


Assuntos
Dinaminas , GTP Fosfo-Hidrolases , Proteínas de Membrana , Proteínas Mitocondriais , Humanos , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Am Chem Soc ; 145(48): 26095-26105, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37989570

RESUMO

Peptide-induced transmembrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions, and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore-forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small-angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that although AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Sequência de Aminoácidos
9.
PLoS Genet ; 16(3): e1008703, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176702

RESUMO

The assembly status of the V. cholerae flagellum regulates biofilm formation, suggesting that the bacterium senses a lack of movement to commit to a sessile lifestyle. Motility and biofilm formation are inversely regulated by the second messenger molecule cyclic dimeric guanosine monophosphate (c-di-GMP). Therefore, we sought to define the flagellum-associated c-di-GMP-mediated signaling pathways that regulate the transition from a motile to a sessile state. Here we report that elimination of the flagellum, via loss of the FlaA flagellin, results in a flagellum-dependent biofilm regulatory (FDBR) response, which elevates cellular c-di-GMP levels, increases biofilm gene expression, and enhances biofilm formation. The strength of the FDBR response is linked with status of the flagellar stator: it can be reversed by deletion of the T ring component MotX, and reduced by mutations altering either the Na+ binding ability of the stator or the Na+ motive force. Absence of the stator also results in reduction of mannose-sensitive hemagglutinin (MSHA) pilus levels on the cell surface, suggesting interconnectivity of signal transduction pathways involved in biofilm formation. Strains lacking flagellar rotor components similarly launched an FDBR response, however this was independent of the status of assembly of the flagellar stator. We found that the FDBR response requires at least three specific diguanylate cyclases that contribute to increased c-di-GMP levels, and propose that activation of biofilm formation during this response relies on c-di-GMP-dependent activation of positive regulators of biofilm production. Together our results dissect how flagellum assembly activates c-di-GMP signaling circuits, and how V. cholerae utilizes these signals to transition from a motile to a sessile state.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Flagelos/metabolismo , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
10.
Proc Natl Acad Sci U S A ; 117(30): 17854-17863, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647059

RESUMO

Pacemaker neurons exert control over neuronal circuit function by their intrinsic ability to generate rhythmic bursts of action potential. Recent work has identified rhythmic gut contractions in human, mice, and hydra to be dependent on both neurons and the resident microbiota. However, little is known about the evolutionary origin of these neurons and their interaction with microbes. In this study, we identified and functionally characterized prototypical ANO/SCN/TRPM ion channel-expressing pacemaker cells in the basal metazoan Hydra by using a combination of single-cell transcriptomics, immunochemistry, and functional experiments. Unexpectedly, these prototypical pacemaker neurons express a rich set of immune-related genes mediating their interaction with the microbial environment. Furthermore, functional experiments gave a strong support to a model of the evolutionary emergence of pacemaker cells as neurons using components of innate immunity to interact with the microbial environment and ion channels to generate rhythmic contractions.


Assuntos
Relógios Biológicos , Hydra/fisiologia , Microbiota , Neurônios/fisiologia , Potenciais de Ação , Animais , Evolução Biológica , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Camundongos
11.
J Bacteriol ; 204(6): e0008422, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35612303

RESUMO

Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins' relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.


Assuntos
Pseudomonas aeruginosa , Tato , Fenômenos Fisiológicos Bacterianos , Biofilmes , Fímbrias Bacterianas/metabolismo , Humanos , Pseudomonas aeruginosa/metabolismo
12.
J Bacteriol ; 204(5): e0052821, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35377166

RESUMO

The downregulation of Pseudomonas aeruginosa flagellar motility is a key event in biofilm formation, host colonization, and the formation of microbial communities, but the external factors that repress motility are not well understood. Here, we report that on soft agar, swarming motility can be repressed by cells that are nonmotile due to the absence of a flagellum or flagellar rotation. Mutants that lack either flagellum biosynthesis or rotation, when present at as little as 5% of the total population, suppressed swarming of wild-type cells. Non-swarming cells required functional type IV pili and the ability to produce Pel exopolysaccharide to suppress swarming by the flagellated wild type. Flagellated cells required only type IV pili, but not Pel production, for their swarming to be repressed by non-flagellated cells. We hypothesize that interactions between motile and nonmotile cells may enhance the formation of sessile communities, including those involving multiple genotypes, phenotypically diverse cells, and perhaps other species. IMPORTANCE Our study shows that, under the conditions tested, a small population of non-swarming cells can impact the motility behavior of a larger population. The interactions that lead to the suppression of swarming motility require type IV pili and a secreted polysaccharide, two factors with known roles in biofilm formation. These data suggest that interactions between motile and nonmotile cells may enhance the transition to sessile growth in populations and promote interactions between cells with different genotypes.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Pseudomonas aeruginosa/metabolismo
13.
J Biol Chem ; 297(1): 100828, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048712

RESUMO

Cathelicidins such as the human 37-amino acid peptide (LL-37) are peptides that not only potently kill microbes but also trigger inflammation by enabling immune recognition of endogenous nucleic acids. Here, a detailed structure-function analysis of LL-37 was performed to understand the details of this process. Alanine scanning of 34-amino acid peptide (LL-34) showed that some variants displayed increased antimicrobial activity against Staphylococcus aureus and group A Streptococcus. In contrast, different substitutions clustered on the hydrophobic face of the LL-34 alpha helix inhibited the ability of those variants to promote type 1 interferon expression in response to U1 RNA or to present U1 to the scavenger receptor (SR) B1 on the keratinocyte cell surface. Small-angle X-ray scattering experiments of the LL-34 variants LL-34, F5A, I24A, and L31A demonstrated that these peptides form cognate supramolecular structures with U1 characterized by inter-dsRNA spacings of approximately 3.5 nm, a range that has been previously shown to activate toll-like receptor 3 by the parent peptide LL-37. Therefore, while alanine substitutions on the hydrophobic face of LL-34 led to loss of binding to SRs and the complete loss of autoinflammatory responses in epithelial and endothelial cells, they did not inhibit the ability to organize with U1 RNA in solution to associate with toll-like receptor 3. These observations advance our understanding of how cathelicidin mediates the process of innate immune self-recognition to enable inert nucleic acids to trigger inflammation. We introduce the term "innate immune vetting" to describe the capacity of peptides such as LL-37 to enable certain nucleic acids to become an inflammatory stimulus through SR binding prior to cell internalization.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Inflamação/patologia , RNA de Cadeia Dupla/metabolismo , Receptores Depuradores/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Fenômenos Biofísicos , Linhagem Celular , Membrana Celular/metabolismo , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/genética , Interferon Tipo I/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Receptor 3 Toll-Like/metabolismo , Transcrição Gênica , Catelicidinas
14.
Proc Natl Acad Sci U S A ; 116(14): 6944-6953, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877253

RESUMO

Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.


Assuntos
Células Eucarióticas , Reconhecimento Automatizado de Padrão , Peptídeos/genética , Análise de Sequência de Proteína , Peptídeos/química , Estrutura Secundária de Proteína
15.
Angew Chem Int Ed Engl ; 61(25): e202108501, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35352449

RESUMO

Antimicrobial peptides (AMPs) preferentially permeate prokaryotic membranes via electrostatic binding and membrane remodeling. Such action is drastically suppressed by high salt due to increased electrostatic screening, thus it is puzzling how marine AMPs can possibly work. We examine as a model system, piscidin-1, a histidine-rich marine AMP, and show that ion-histidine interactions play unanticipated roles in membrane remodeling at high salt: Histidines can simultaneously hydrogen-bond to a phosphate and coordinate with an alkali metal ion to neutralize phosphate charge, thereby facilitating multidentate bonds to lipid headgroups in order to generate saddle-splay curvature, a prerequisite to pore formation. A comparison among Na+ , K+ , and Cs+ indicates that histidine-mediated salt tolerance is ion specific. We conclude that histidine plays a unique role in enabling protein/peptide-membrane interactions that occur in marine or other high-salt environment.


Assuntos
Peptídeos Antimicrobianos , Histidina , Histidina/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Fosfatos , Tolerância ao Sal
16.
Semin Cell Dev Biol ; 88: 173-184, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29432957

RESUMO

Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly kill pathogens by membrane permeation. However, recent work has shown that AMPs are pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this review, we provide a historical overview of the immunomodulatory properties of natural and synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We also summarize the various mechanisms of AMP immune modulation and outline key structural rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) signaling. In particular, we describe several complementary studies demonstrating how AMPs self-assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated inflammation. In a broader scope, we discuss how this new conceptual framework allows for the prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial activity in known immune signaling proteins can inform these predictions, and how these findings reshape our understanding of AMPs in normal host defense and autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Catelicidinas/imunologia , Defensinas/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Catelicidinas/química , Catelicidinas/genética , DNA/química , DNA/genética , DNA/imunologia , Defensinas/química , Defensinas/genética , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Imunomodulação , Ligação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , Receptores Toll-Like/genética
17.
Gastroenterology ; 159(6): 2181-2192.e1, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841647

RESUMO

BACKGROUND & AIMS: Clostridioides difficile toxin A (TcdA) activates the innate immune response. TcdA co-purifies with DNA. Toll-like receptor 9 (TLR9) recognizes bacterial DNA to initiate inflammation. We investigated whether DNA bound to TcdA activates an inflammatory response in murine models of C difficile infection via activation of TLR9. METHODS: We performed studies with human colonocytes and monocytes and macrophages from wild-type and TLR9 knockout mice incubated with TcdA or its antagonist (ODN TTAGGG) or transduced with vectors encoding TLR9 or small-interfering RNAs. Cytokine production was measured with enzyme-linked immunosorbent assay. We studied a transduction domain of TcdA (TcdA57-80), which was predicted by machine learning to have cell-penetrating activity and confirmed by synchrotron small-angle X-ray scattering. Intestines of CD1 mice, C57BL6J mice, and mice that express a form of TLR9 that is not activated by CpG DNA were injected with TcdA, TLR9 antagonist, or both. Enterotoxicity was estimated based on loop weight to length ratios. A TLR9 antagonist was tested in mice infected with C difficile. We incubated human colon explants with an antagonist of TLR9 and measured TcdA-induced production of cytokines. RESULTS: The TcdA57-80 protein transduction domain had membrane remodeling activity that allowed TcdA to enter endosomes. TcdA-bound DNA entered human colonocytes. TLR9 was required for production of cytokines by cultured cells and in human colon explants incubated with TcdA. TLR9 was required in TcdA-induced mice intestinal secretions and in the survival of mice infected by C difficile. Even in a protease-rich environment, in which only fragments of TcdA exist, the TcdA57-80 domain organized DNA into a geometrically ordered structure that activated TLR9. CONCLUSIONS: TcdA from C difficile can bind and organize bacterial DNA to activate TLR9. TcdA and TcdA fragments remodel membranes, which allows them to access endosomes and present bacterial DNA to and activate TLR9. Rather than inactivating the ability of DNA to bind TLR9, TcdA appears to chaperone and organize DNA into an inflammatory, spatially periodic structure.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Colite/imunologia , Enterotoxinas/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Antibacterianos/efeitos adversos , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infecções por Clostridium/induzido quimicamente , Infecções por Clostridium/microbiologia , Colite/induzido quimicamente , Colite/microbiologia , DNA Bacteriano/metabolismo , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Transdução de Sinais/imunologia , Receptor Toll-Like 9/genética
18.
Phys Biol ; 18(5)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33462162

RESUMO

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.


Assuntos
Aderência Bacteriana/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes , Percepção de Quorum/fisiologia , Biofilmes/crescimento & desenvolvimento
19.
Proc Natl Acad Sci U S A ; 115(17): 4471-4476, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29559526

RESUMO

Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Fímbrias Bacterianas/fisiologia , Pseudomonas aeruginosa/fisiologia , Sistemas do Segundo Mensageiro/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-32423961

RESUMO

Candida albicans is a commensal organism that causes life-threatening or life-altering opportunistic infections. Treatment of Candida infections is limited by the paucity of antifungal drug classes. Naturally occurring antimicrobial peptides are promising agents for drug development. CCL28 is a CC chemokine that is abundant in saliva and has in vitro antimicrobial activity. In this study, we examine the in vivo Candida killing capacity of CCL28 in oropharyngeal candidiasis as well as the spectrum and mechanism of anti-Candida activity. In the mouse model of oropharyngeal candidiasis, application of wild-type CCL28 reduces oral fungal burden in severely immunodeficient mice without causing excessive inflammation or altering tissue neutrophil recruitment. CCL28 is effective against multiple clinical strains of C. albicans Polyamine protein transporters are not required for CCL28 anti-Candida activity. Both structured and unstructured CCL28 proteins show rapid and sustained fungicidal activity that is superior to that of clinical antifungal agents. Application of wild-type CCL28 to C. albicans results in membrane disruption as measured by solute movement, enzyme leakage, and induction of negative Gaussian curvature on model membranes. Membrane disruption is reduced in CCL28 lacking the functional C-terminal tail. Our results strongly suggest that CCL28 can exert antifungal activity in part via membrane permeation and has potential for development as an anti-Candida therapeutic agent without inflammatory side effects.


Assuntos
Antifúngicos , Candidíase Bucal , Quimiocinas CC/farmacologia , Animais , Antifúngicos/farmacologia , Candida albicans , Candidíase Bucal/tratamento farmacológico , Quimiocinas , Camundongos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA