Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsy Behav ; 153: 109725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458121

RESUMO

The epilepsy monitoring unit (EMU) is a complex and dynamic operational environment, where the cognitive and behavioural consequences of medical and environmental changes often go unnoticed. The psychomotor vigilance task (PVT) has been used to detect changes in cognition and behaviour in numerous contexts, including among astronauts on spaceflight missions, pilots, and commercial drivers. Here, we piloted serial point-of-care administration of the PVT in children undergoing invasive monitoring in the EMU. Seven children completed the PVT throughout their hospital admission and their performance was associated with daily seizure counts, interictal epileptiform discharges, number of antiseizure medications (ASMs) administered, and sleep quality metrics. Using mixed-effects models, we found that PVT reaction time and accuracy were adversely affected by greater number of ASMs and interictal epileptiform activity. We show that serial point-of-care PVT is simple and feasible in the EMU and may enable greater understanding of individual patient responses to medical and environmental alterations, inform clinical decision-making, and support quality-improvement and research initiatives.


Assuntos
Epilepsia , Desempenho Psicomotor , Criança , Humanos , Desempenho Psicomotor/fisiologia , Sistemas Automatizados de Assistência Junto ao Leito , Vigília/fisiologia , Tempo de Reação/fisiologia , Epilepsia/diagnóstico
2.
Epilepsia ; 64(5): e75-e81, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36809544

RESUMO

Children with epilepsy commonly have comorbid neurocognitive impairments that severely affect their psychosocial well-being, education, and future career prospects. Although the provenance of these deficits is multifactorial, the effects of interictal epileptiform discharges (IEDs) and anti-seizure medications (ASMs) are thought to be particularly severe. Although certain ASMs can be leveraged to inhibit IED occurrence, it remains unclear whether epileptiform discharges or the medications themselves are most deleterious to cognition. To examine this question, 25 children undergoing invasive monitoring for refractory focal epilepsy performed one or more sessions of a cognitive flexibility task. Electrophysiological data were recorded to detect IEDs. Between repeated sessions, prescribed ASMs were either continued or titrated to <50% of the baseline dose. Hierarchical mixed-effects modeling assessed the relationship between task reaction time (RT), IED occurrence, ASM type, and dose while controlling for seizure frequency. Both presence (ß ± SE = 49.91 ± 16.55 ms, p = .003) and number of IEDs (ß ± SE = 49.84 ± 12.51 ms, p < .001) were associated with slowed task RT. Higher dose oxcarbazepine significantly reduced IED frequency (p = .009) and improved task performance (ß ± SE = -107.43 ± 39.54 ms, p = .007). These results emphasize the neurocognitive consequences of IEDs independent of seizure effects. Furthermore, we demonstrate that inhibition of IEDs following treatment with select ASMs is associated with improved neurocognitive function.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Criança , Humanos , Eletroencefalografia/métodos , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Epilepsias Parciais/complicações , Epilepsias Parciais/tratamento farmacológico , Cognição/fisiologia , Epilepsia Resistente a Medicamentos/complicações
3.
Neuromodulation ; 26(3): 601-606, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35840521

RESUMO

OBJECTIVE: The antiseizure effects of vagus nerve stimulation (VNS) are thought to be mediated by the modulation of afferent thalamocortical circuitry. Cross-frequency phase-amplitude coupling (PAC) is a mechanism of hierarchical network coordination across multiple spatiotemporal scales. In this study, we leverage local field potential (LFP) recordings from the centromedian (CM) (n = 3) and anterior (ATN) (n = 2) nuclei in five patients with tandem thalamic deep brain stimulation and VNS to study neurophysiological changes in the thalamus in response to VNS. MATERIALS AND METHODS: Bipolar LFP data were recorded from contact pairs spanning target nuclei in VNS "on" and "off" states. RESULTS: Active VNS was associated with increased PAC between theta, alpha, and beta phase and gamma amplitude in CM (q < 0.05). Within the ATN, PAC changes also were observed, although these were less robust. In both nuclei, active VNS also modulated interhemispheric bithalamic functional connectivity. CONCLUSIONS: We report that VNS is associated with enhanced PAC and coordinated interhemispheric interactions within and between thalamic nuclei, respectively. These findings advance understanding of putative neurophysiological effects of acute VNS and contextualize previous animal and human studies showing distributed cortical synchronization after VNS.


Assuntos
Estimulação do Nervo Vago , Animais , Humanos , Tálamo
4.
Epilepsia ; 63(10): 2583-2596, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778973

RESUMO

OBJECTIVE: Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS: Intracranial recordings were acquired from stereotactically implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative, respectively. Trials with and without transient epileptiform events were compared. RESULTS: Twelve children (mean age = 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rayleigh z-score = 9, Rayleigh z-score = 8). Retrieval trials that were in phase with the preferred phase angle were associated with faster reaction times (p = .01, p = .03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (phase difference derivative [PDD] z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rayleigh z-score = 5, Rayleigh z-score = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = .01, p = .03). SIGNIFICANCE: This work highlights the role of hippocampal phase in working memory. We observe poststimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Adolescente , Criança , Hipocampo , Humanos , Transtornos da Memória/etiologia , Memória de Curto Prazo
5.
Epilepsia ; 63(10): 2571-2582, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833751

RESUMO

OBJECTIVE: The theory of transient cognitive impairment in epilepsy posits that lapses in attention result from ephemeral disruption of attentional circuitry by interictal events. Eye movements are intimately associated with human attention and can be monitored in real time using eye-tracking technologies. Here, we sought to characterize the associations between interictal epileptiform discharges (IEDs), gaze, and attentional behavior in children with epilepsy. METHODS: Eleven consecutive children undergoing invasive monitoring with stereotactic electrodes for localization-related epilepsy performed an attentional set-shifting task while tandem intracranial electroencephalographic signals and eye-tracking data were recorded. Using an established algorithm, IEDs were detected across all intracranial electrodes on a trial-by-trial basis. Hierarchical mixed-effects modeling was performed to delineate associations between trial reaction time (RT), eye movements, and IEDs. RESULTS: Hierarchical mixed-effects modeling revealed that both the presence of an IED (ß ± SE = 72.74 ± 24.21 ms, p = .003) and the frequency of epileptiform events (ß ± SE = 67.54 ± 17.30 ms, p < .001) were associated with prolonged RT on the attentional set-shifting task. IED occurrence at the time of stimulus presentation was associated with delays in gaze initiation toward the visual targets (p = .017). SIGNIFICANCE: The occurrence of epileptiform activity in close temporal association with stimulus presentation is associated with delays in target-directed gaze and prolonged response time, hallmarks of momentary lapses in attention. These findings provide novel insights into the mechanisms of transient impairments in children and support the use of visual tracking as a correlate of higher order attentional behavior.


Assuntos
Epilepsias Parciais , Epilepsia , Atenção , Criança , Eletroencefalografia , Epilepsias Parciais/complicações , Epilepsia/complicações , Epilepsia/cirurgia , Movimentos Oculares , Humanos
6.
Cereb Cortex ; 32(1): 29-40, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34255825

RESUMO

The neural mechanisms that underlie selective attention in children are poorly understood. By administering a set-shifting task to children with intracranial electrodes stereotactically implanted within anterior cingulate cortex (ACC) for epilepsy monitoring, we demonstrate that selective attention in a set-shifting task is dependent upon theta-band phase resetting immediately following stimulus onset and that the preferred theta phase angle is predictive of reaction time during attentional shift. We also observe selective enhancement of oscillatory coupling between the ACC and the dorsal attention network and decoupling with the default mode network during task performance. When transient focal epileptic activity occurs around the time of stimulus onset, phase resetting is impaired, connectivity changes with attentional and default mode networks are abolished, and reaction times are prolonged. The results of the present work highlight the fundamental mechanistic role of oscillatory phase in ACC in supporting attentional circuitry and present novel opportunities to remediate attention deficits in children with epilepsy.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Epilepsia , Criança , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética
7.
J Neurophysiol ; 126(5): 1614-1621, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550020

RESUMO

Decelerated resting cortical oscillations, high-frequency activity, and enhanced cross-frequency interactions are features of focal epilepsy. The association between electrophysiological signal properties and neurocognitive function, particularly following resective surgery, is, however, unclear. In the current report, we studied intraoperative recordings from intracranial electrodes implanted in seven children with focal epilepsy and analyzed the spectral dynamics both before and after surgical resection of the hypothesized seizure focus. The associations between electrophysiological spectral signatures and each child's neurocognitive profiles were characterized using a partial least squares analysis. We find that extent of spectral alteration at the periphery of surgical resection, as indexed by slowed resting frequency and its acceleration following surgery, is associated with baseline cognitive deficits in children. The current report provides evidence supporting the relationship between altered spectral properties in focal epilepsy and neuropsychological deficits in children. In particular, these findings suggest a critical role of disrupted thalamocortical rhythms, which are believed to underlie the spectral alterations we describe, in both epileptogenicity and neurocognitive function.NEW & NOTEWORTHY Spectral alterations marked by decelerated resting oscillations and ectopic high-frequency activity have been noted in focal epilepsy. We leveraged intraoperative recordings from chronically implanted electrodes pre- and postresection to understand the association between these electrophysiological phenomena and neuropsychological function. We find that the extent of spectral alteration, indexed by slowed resting frequency and its acceleration following resection, is associated with baseline cognitive deficits. These findings provide novel insights into neurocognitive impairments in focal epilepsy.


Assuntos
Ondas Encefálicas/fisiologia , Disfunção Cognitiva/fisiopatologia , Eletrocorticografia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Monitorização Neurofisiológica Intraoperatória , Biomarcadores , Criança , Disfunção Cognitiva/etiologia , Epilepsias Parciais/complicações , Humanos , Procedimentos Neurocirúrgicos , Resultado do Tratamento
8.
Ann Neurol ; 86(5): 743-753, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31393626

RESUMO

OBJECTIVE: Vagus nerve stimulation (VNS) is a common treatment for medically intractable epilepsy, but response rates are highly variable, with no preoperative means of identifying good candidates. This study aimed to predict VNS response using structural and functional connectomic profiling. METHODS: Fifty-six children, comprising discovery (n = 38) and validation (n = 18) cohorts, were recruited from 3 separate institutions. Diffusion tensor imaging was used to identify group differences in white matter microstructure, which in turn informed beamforming of resting-state magnetoencephalography recordings. The results were used to generate a support vector machine learning classifier, which was independently validated. This algorithm was compared to a second classifier generated using 31 clinical covariates. RESULTS: Treatment responders demonstrated greater fractional anisotropy in left thalamocortical, limbic, and association fibers, as well as greater connectivity in a functional network encompassing left thalamic, insular, and temporal nodes (p < 0.05). The resulting classifier demonstrated 89.5% accuracy and area under the receiver operating characteristic (ROC) curve of 0.93 on 10-fold cross-validation. In the external validation cohort, this model demonstrated an accuracy of 83.3%, with a sensitivity of 85.7% and specificity of 75.0%. This was significantly superior to predictions using clinical covariates alone, which exhibited an area under the ROC curve of 0.57 (p < 0.008). INTERPRETATION: This study provides the first multi-institutional, multimodal connectomic prediction algorithm for VNS, and provides new insights into its mechanism of action. Reliable identification of VNS responders is critical to mitigate surgical risks for children who may not benefit, and to ensure cost-effective allocation of health care resources. ANN NEUROL 2019;86:743-753.


Assuntos
Conectoma/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Máquina de Vetores de Suporte , Resultado do Tratamento , Estimulação do Nervo Vago/métodos , Adolescente , Criança , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Magnetoencefalografia/métodos , Masculino , Seleção de Pacientes
9.
Epilepsia ; 61(8): 1691-1700, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32619065

RESUMO

OBJECTIVE: Seizure recurrence following surgery for temporal lobe (TL) epilepsy may be related to extratemporal epileptogenic foci, so-called temporal-plus (TL+) epilepsy. Here, we sought to leverage whole brain connectomic profiling in magnetoencephalography (MEG) to identify neural networks indicative of TL+ epilepsy in children. METHODS: Clinical and MEG data were analyzed for 121 children with TL and TL+ epilepsy spanning 20 years at the Hospital for Sick Children. Resting-state connectomes were derived using the weighted phase lag index from neuromagnetic oscillations. Multidimensional associations between patient connectomes, TL versus TL+ epilepsy, seizure freedom, and clinical covariates were performed using a partial least squares (PLS) analysis. Bootstrap resampling statistics were performed to assess statistical significance. RESULTS: A single significant latent variable representing 66% of the variance in the data was identified with significant contributions from extent of epilepsy (TL vs TL+), duration of illness, and underlying etiology. This component was associated with significant bitemporal and frontotemporal connectivity in the theta, alpha, and beta bands. By extracting a brain score, representative of the observed connectivity profile, patients with TL epilepsy were dissociated from those with TL+, independent of their postoperative seizure outcome. SIGNIFICANCE: By analyzing 121 connectomes derived from MEG data using a PLS approach, we find that connectomic profiling could dissociate TL from TL+ epilepsy. These findings may inform patient selection for resective procedures and guide decisions surrounding invasive monitoring.


Assuntos
Conectoma , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Magnetoencefalografia , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Vias Neurais/fisiopatologia , Procedimentos Neurocirúrgicos , Recidiva , Estudos Retrospectivos , Resultado do Tratamento
10.
J Neurophysiol ; 121(6): 2020-2027, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969798

RESUMO

Resonant interactions between the thalamus and cortex subserve a critical role for maintenance of consciousness as well as cognitive functions. In states of abnormal thalamic inhibition, thalamocortical dysrhythmia (TCD) has been described. The characteristics of TCD include a slowing of resting oscillations, ectopic high-frequency activity, and increased cross-frequency coupling. Here, we demonstrate the presence of TCD in four patients who underwent resective epilepsy surgery with chronically implanted electrodes under anesthesia, continuously recording activity from brain regions at the periphery of the epileptogenic zone before and after resection. Following resection, we report an acceleration of the large-scale network resting frequency coincident with decreases in cross-frequency phase-amplitude coupling. Interregional functional connectivity in the surrounding cortex was also increased following resection of the epileptogenic focus. These findings provide evidence for the presence of TCD in focal epilepsy and highlight the importance of reciprocal thalamocortical oscillatory interactions in defining novel biomarkers for resective surgeries. NEW & NOTEWORTHY Thalamocortical dysrhythmia (TCD) occurs in the context of thalamic dysfacilitation and is characterized by slowing of resting oscillations, ectopic high-frequency activity, and cross-frequency coupling. We provide evidence for TCD in focal epilepsy by studying electrophysiological changes occurring at the periphery of the resection margin. We report acceleration of resting activity coincident with decreased cross-frequency coupling and increased functional connectivity. The study of TCD in epilepsy has implications as a biomarker and therapeutic target.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma , Eletrocorticografia , Epilepsias Parciais/fisiopatologia , Rede Nervosa/fisiopatologia , Tálamo/fisiopatologia , Adulto , Eletrodos Implantados , Epilepsias Parciais/cirurgia , Humanos , Monitorização Neurofisiológica Intraoperatória
11.
J Neurophysiol ; 119(4): 1497-1505, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357461

RESUMO

Cross-frequency phase-amplitude coupling (cfPAC) subserves an integral role in the hierarchical organization of interregional neuronal communication and is also expressed by epileptogenic cortex during seizures. Here, we sought to characterize patterns of cfPAC expression in the anterior thalamic nuclei during seizures by studying extra-operative recordings in patients implanted with deep brain stimulation electrodes for intractable epilepsy. Nine seizures from two patients were analyzed in the peri-ictal period. CfPAC was calculated using the modulation index and interregional functional connectivity was indexed using the phase-locking value. Statistical analysis was performed within subjects on the basis of nonparametric permutation and corrected with Gaussian field theory. Five of the nine analyzed seizures demonstrated significant cfPAC. Significant cfPAC occurred during the pre-ictal and ictal periods in three seizures, as well as the postictal windows in four seizures. The preferred phase at which cfPAC occurred differed 1) in space, between the thalami of the epileptogenic and nonepileptogenic hemispheres; and 2) in time, at seizure termination. The anterior thalamic nucleus of the epileptogenic hemisphere also exhibited altered interregional phase-locking synchrony concurrent with the expression of cfPAC. By analyzing extraoperative recordings from the anterior thalamic nuclei, we show that cfPAC associated with altered interregional phase synchrony is lateralized to the thalamus of the epileptogenic hemisphere during seizures. Electrophysiological differences in cfPAC, including preferred phase of oscillatory interactions may be further investigated as putative targets for individualized neuromodulation paradigms in patients with drug-resistant epilepsy. NEW & NOTEWORTHY The association between fast brain activity and slower oscillations is an integral mechanism for hierarchical neuronal communication, which is also manifested in epileptogenic cortex. Our data suggest that the same phenomenon occurs in the anterior thalamic nuclei during seizures. Further, the preferred phase of modulation shows differences in space, between the epileptogenic and nonepileptogenic hemispheres and time, as seizures terminate. Our data encourage the study of cross-frequency coupling for targeted, individualized closed-loop stimulation paradigms.


Assuntos
Núcleos Anteriores do Tálamo/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Sincronização de Fases em Eletroencefalografia/fisiologia , Eletroencefalografia/métodos , Rede Nervosa/fisiopatologia , Convulsões/fisiopatologia , Adolescente , Adulto , Estimulação Encefálica Profunda , Eletrodos Implantados , Epilepsia/terapia , Feminino , Humanos , Masculino
12.
Neurosurg Focus ; 45(3): E2, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30173606

RESUMO

Vagus nerve stimulation (VNS) is increasingly considered for the treatment of intractable epilepsy and holds potential for the management of a variety of neuropsychiatric conditions. The emergence of the field of connectomics and the introduction of large-scale modeling of neural networks has helped elucidate the underlying neurobiology of VNS, which may be variably expressed in patient populations and related to responsiveness to stimulation. In this report, the authors outline current data on the underlying neural circuitry believed to be implicated in VNS responsiveness in what the authors term the "vagus afferent network." The emerging role of biomarkers to predict treatment effect is further discussed and important avenues for future work are highlighted.


Assuntos
Conectoma/métodos , Epilepsia Resistente a Medicamentos/terapia , Rede Nervosa/fisiologia , Pesquisa Translacional Biomédica/métodos , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Vias Aferentes/fisiologia , Tronco Encefálico/fisiologia , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/fisiopatologia , Humanos , Locus Cerúleo/fisiologia
14.
Epilepsia ; 55(9): 1399-405, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25070562

RESUMO

OBJECTIVE: Spike and slow waves consist of a "spike" including high-frequency oscillations (HFOs), which are linked to epileptogenicity and a "post-spike slow wave (PSS)" related to inhibitory activity. The aim of this study was to elucidate the spatiotemporal relationship between spike-related HFOs and PSS in patients with focal cortical dysplasia (FCD) type II. METHODS: We studied 10 pediatric patients with FCD type II, who underwent extraoperative video-electroencephalography (EEG). We selected spike and slow waves, which included HFOs (80-200 Hz), and performed spike peak-locked averaging 10 times during both 30 s interictal (>1 h apart from seizures) and 30 s preictal periods. We calculated the power of spike-related HFOs and PSS during both periods for the following three areas: (1) inside the seizure-onset zone (SOZ), (2) inside the resection area (RA) but outside SOZ (RA-SOZ), and (3) outside the RA. Between the interictal and preictal periods we performed correlation (Spearman's coefficient) and simple linear regression analyses comparing HFO and PSS power within each area. RESULTS: A total of 1,614 averaged spike and slow waves were analyzed during both periods. During the interictal periods, there were significant positive correlations between HFO and PSS power in all areas (inside SOZ, r = 0.568; RA-SOZ, r = 0.700; outside RA, r = 0.320). During the preictal periods, the correlation became weaker inside SOZ (r = 0.149) and remained unchanged both inside the RA-SOZ (r = 0.704) and outside RA (r = 0.346). From the interictal to preictal period, the slope (ΔPSS power/ΔHFO power) of the simple regression line decreased inside SOZ (0.349 to 0.051) but increased in RA-SOZ (0.534 to 0.734) and outside RA (0.267 to 0.435). SIGNIFICANCE: Relative power reduction of PSS to spike-related HFOs in SOZ is relevant for seizure initiation. Our analysis will contribute to future studies of seizure prediction and distinction between pathologic and physiologic HFOs. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Convulsões/fisiopatologia , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Estudos Retrospectivos , Convulsões/patologia , Processamento de Sinais Assistido por Computador , Gravação em Vídeo
15.
Seizure ; 117: 293-297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38608341

RESUMO

PURPOSE: Stereoelectroencephalography (sEEG) is increasingly utilized for localization of seizure foci, functional mapping, and neurocognitive research due to its ability to target deep and difficult to reach anatomical locations and to study in vivo brain function with a high signal-to-noise ratio. The research potential of sEEG is constrained by the need for accurate localization of the implanted electrodes in a common template space for group analyses. METHODS: We present an algorithm to automate the grouping of sEEG electrodes by trajectories, labelled by target and insertion point. This algorithm forms the core of a pipeline that fully automates the entire process of electrode localization in standard space, using raw CT and MRI images to produce atlas labelled MNI coordinates. RESULTS: Across 196 trajectories from 20 patients, the pipeline successfully processed 190 trajectories with localizations within 0.25±0.55 mm of the manual annotation by two reviewers. Six electrode trajectories were not directly identified due to metal artifacts and locations were interpolated based on the first and last contact location and the number of contacts in that electrode as listed in the surgical record. CONCLUSION: We introduce our algorithm and pipeline for automatically localizing, grouping, and classifying sEEG electrodes from raw CT and MRI. Our algorithm adds to existing pipelines and toolboxes for electrode localization by automating the manual step of marking and grouping electrodes, thereby expedites the analyses of sEEG data, particularly in large datasets.


Assuntos
Algoritmos , Eletrodos Implantados , Eletroencefalografia , Imageamento por Ressonância Magnética , Técnicas Estereotáxicas , Humanos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Adulto , Tomografia Computadorizada por Raios X , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Mapeamento Encefálico/métodos
16.
J Neurosci Methods ; 405: 110101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432305

RESUMO

BACKGROUND: In this study, we examined the utility of simultaneous scalp and stereotactic intracranial electroencephalography (SSIEEG) in epilepsy patients. Although SSIEEG offers valuable insights into epilepsy and cognitive function, its routine use is uncommon. Challenges include interpreting post-craniotomy scalp EEG due to surgically implanted electrodes. NEW METHOD: We describe our methodology for conducting SSIEEG recordings. To simulate the potential impact on EEG interpretation, we computed the leadfield of scalp electrodes with and without burrholes using Finite Element Analysis to compare the resulting sensitivity volume and waveforms of simulated intracranial signals between skulls with and without burrholes. RESULTS: The presence of burr holes in the skull layer of the leadfield models did not discernibly modify simulated waveforms or scalp EEG topology. Using realistic SEEG burr hole diameter, the difference in the average leadfield of scalp electrodes was 0.12% relative to the effect of switching two nearby electrodes, characterized by the cosine similarity difference. No patients experienced adverse events related to SSIEEG. COMPARISON WITH EXISTING METHODS: Although there is increasing acceptance and interest in SSIEEG, few studies have characterized the technical feasibility. Here, we demonstrate through modelling that scalp recordings from SSIEEG are comparable to that through an intact skull. CONCLUSION: The placement and simultaneous acquisition of scalp EEG during invasive monitoring through stereotactically inserted EEG electrodes is routinely performed at the Hospital for Sick Children. Scalp EEG recordings may assist with clinical interpretation. Burr holes in the skull layer did not discernibly alter EEG waveforms or topology.


Assuntos
Epilepsia , Couro Cabeludo , Criança , Humanos , Análise de Elementos Finitos , Eletroencefalografia/métodos , Eletrocorticografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia
17.
Neurosurgery ; 92(1): 18-26, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519857

RESUMO

BACKGROUND: Low-grade cerebral neoplasms are commonly associated with medically intractable epilepsy. Despite increasing evidence that epileptogenic brain regions commonly extend beyond visible tumor margins, the utility of extended surgical resections leveraging intraoperative electrocorticography (ECoG) remains unclear. OBJECTIVE: To determine whether ECoG-guided surgery is associated with improved postoperative seizure control. METHODS: We performed a systematic review and meta-analysis encompassing both adult and pediatric populations. The primary outcome measure was postoperative seizure freedom as defined by Engel class I outcome. Class I/II outcome served as a secondary measure. Relevant clinical and operative data were recorded. A random-effects meta-analysis based on the pooled odds ratio (OR) of seizure freedom was performed on studies that reported comparative data between ECoG-guided surgery and lesionectomy. RESULTS: A total of 31 studies encompassing 1115 patients with medically refractory epilepsy met inclusion criteria. Seven studies reported comparative data between ECoG-guided surgery and lesionectomy for meta-analysis. Tumor resection guided by ECoG was associated with significantly greater postoperative seizure freedom (OR 3.95, 95% CI 2.32-6.72, P < .0001) and class I/II outcome (OR 5.10, 95% CI 1.97-13.18, P = .0008) compared with lesionectomy. Postoperative adverse events were rare in both groups. CONCLUSION: These findings provide support for the utilization of ECoG-guided surgery to improve postoperative seizure freedom in cases of refractory epilepsy associated with low-grade neoplasms. However, this effect may be attenuated in the presence of concomitant cortical dysplasia, highlighting a need for improved presurgical and intraoperative monitoring for these most challenging cases of localization-related epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Adulto , Humanos , Eletrocorticografia , Resultado do Tratamento , Estudos Retrospectivos , Epilepsia/etiologia , Epilepsia/cirurgia , Liberdade , Eletroencefalografia
18.
Neural Netw ; 167: 827-837, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37741065

RESUMO

Cognitive flexibility encompasses the ability to efficiently shift focus and forms a critical component of goal-directed attention. The neural substrates of this process are incompletely understood in part due to difficulties in sampling the involved circuitry. We leverage stereotactic intracranial recordings to directly resolve local-field potentials from otherwise inaccessible structures to study moment-to-moment attentional activity in children with epilepsy performing a flexible attentional task. On an individual subject level, we employed deep learning to decode neural features predictive of task performance indexed by single-trial reaction time. These models were subsequently aggregated across participants to identify predictive brain regions based on AAL atlas and FIND functional network parcellations. Through this approach, we show that fluctuations in beta (12-30 Hz) and gamma (30-80 Hz) power reflective of increased top-down attentional control and local neuronal processing within relevant large-scale networks can accurately predict single-trial task performance. We next performed connectomic profiling of these highly predictive nodes to examine task-related engagement of distributed functional networks, revealing exclusive recruitment of the dorsal default mode network during shifts in attention. The identification of distinct substreams within the default mode system supports a key role for this network in cognitive flexibility and attention in children. Furthermore, convergence of our results onto consistent functional networks despite significant inter-subject variability in electrode implantations supports a broader role for deep learning applied to intracranial electrodes in the study of human attention.


Assuntos
Conectoma , Aprendizado Profundo , Humanos , Criança , Mapeamento Encefálico , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Encéfalo/fisiologia , Atenção/fisiologia , Eletroencefalografia , Imageamento por Ressonância Magnética , Cognição/fisiologia
19.
Epilepsy Res ; 182: 106913, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395570

RESUMO

The thalamus is a densely connected collection of nuclei that play a critical role in gating information flow across the neocortex. Through diffuse reciprocal cortico-thalamo-cortical connectivity, the anterior and centromedian nuclei exert remarkable control over cortically expressed activity. Consequently, mounting evidence implicates these thalamic centres in both the genesis and propagation of aberrant epileptiform activity across the brain. The present work reviews existing literature with regards to the anatomy, function, and dysfunction of the anterior and centromedian thalamic nuclei as they relate to epileptogenesis and ictal dynamics in humans. A confluence of electrophysiological, anatomical, and neuromodulatory evidence links these thalamic hubs to a variety of epilepsy syndromes. These data are discussed as they relate to targeted thalamic neuromodulation.


Assuntos
Epilepsia , Tálamo , Humanos
20.
Soc Cogn Affect Neurosci ; 17(4): 377-386, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34654932

RESUMO

Very preterm (VPT: ≤32 weeks of gestational age) birth poses an increased risk for social and cognitive morbidities that persist throughout life. Resting-state functional network connectivity studies provide information about the intrinsic capacity for cognitive processing. We studied the following four social-cognitive resting-state networks: the default mode, salience, frontal-parietal and language networks. We examined functional connectivity using magnetoencephalography with individual head localization using each participant's MRI at 6 (n = 40) and 8 (n = 40) years of age compared to age- and sex-matched full-term (FT) born children (n = 38 at 6 years and n = 43 at 8 years). VPT children showed increased connectivity compared to FT children in the gamma band (30-80 Hz) at 6 years within the default mode network (DMN), and between the DMN and the salience, frontal-parietal and language networks, pointing to more diffuse, less segregated processing across networks at this age. At 8 years, VPT children had more social and academic difficulties. Increased DMN connectivity at 6 years was associated with social and working memory difficulties at 8 years. Therefore, we suggest that increased DMN connectivity contributes to the observed emerging social and cognitive morbidities in school age.


Assuntos
Encéfalo , Lactente Extremamente Prematuro , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Cognição , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Magnetoencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA