Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Surg Endosc ; 38(5): 2577-2592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498212

RESUMO

INTRODUCTION: There is growing evidence that the use of robotic-assisted surgery (RAS) in colorectal cancer resections is associated with improved short-term outcomes when compared to laparoscopic surgery (LS) or open surgery (OS), possibly through a reduced systemic inflammatory response (SIR). Serum C-reactive protein (CRP) is a sensitive SIR biomarker and its utility in the early identification of post-operative complications has been validated in a variety of surgical procedures. There remains a paucity of studies characterising post-operative SIR in RAS. METHODS: Retrospective study of a prospectively collected database of consecutive patients undergoing OS, LS and RAS for left-sided and rectal cancer in a single high-volume unit. Patient and disease characteristics, post-operative CRP levels, and clinical outcomes were reviewed, and their relationships explored within binary logistic regression and propensity scores matched models. RESULTS: A total of 1031 patients were included (483 OS, 376 LS, and 172 RAS). RAS and LS were associated with lower CRP levels across the first 4 post-operative days (p < 0.001) as well as reduced complications and length of stay compared to OS in unadjusted analyses. In binary logistic regression models, RAS was independently associated with lower CRP levels at Day 3 post-operatively (OR 0.35, 95% CI 0.21-0.59, p < 0.001) and a reduction in the rate of all complications (OR 0.39, 95% CI 0.26-0.56, p < 0.001) and major complications (OR 0.5, 95% CI 0.26-0.95, p = 0.036). Within a propensity scores matched model comparing LS versus RAS specifically, RAS was associated with lower post-operative CRP levels in the first two post-operative days, a lower proportion of patients with a CRP ≥ 150 mg/L at Day 3 (20.9% versus 30.5%, p = 0.036) and a lower rate of all complications (34.7% versus 46.7%, p = 0.033). CONCLUSIONS: The present observational study shows that an RAS approach was associated with lower postoperative SIR, and a better postoperative complications profile.


Assuntos
Proteína C-Reativa , Complicações Pós-Operatórias , Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Feminino , Masculino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Laparoscopia/métodos , Neoplasias Retais/cirurgia , Resultado do Tratamento , Colectomia/métodos , Protectomia/métodos , Protectomia/efeitos adversos , Tempo de Internação/estatística & dados numéricos , Estresse Fisiológico
2.
Nucleic Acids Res ; 47(19): 10040-10058, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31428776

RESUMO

When proteostasis is disrupted by stresses such as heat shock, the heat stress response will be stimulated, leading to up-regulation of molecular chaperones by transcriptional activation and mRNA stabilization for restoring proteostasis. Although the mechanisms for their transcriptional activation have been clearly defined, how chaperone mRNAs are stabilized remains largely unknown. Starting by exploring the coupling between the apparently unrelated RNA degradation and protein quality control (PQC) systems, we show that the Dis3 ribonuclease, catalytic subunit of the RNA exosome required for RNA degradation, suppresses PQC activity in unstressed cells by degrading mRNAs encoding the Hsp70 cofactors Sis1, Ydj1 and Fes1, as well as some other chaperones or PQC factors, thereby limiting their protein expression. Dis3 is stabilized through its binding to Sis1 and the Hsp70s Ssa1/2. Upon heat stress, loss of Sis1 and Ssa1/2 availability triggers Dis3 ubiquitination and degradation, leading to stabilization of those chaperone mRNAs originally targeted by Dis3. We further demonstrate that polyQ-expanded huntingtin delays Dis3 degradation during heat stress and thus hinders chaperone mRNA stabilization. Our findings not only reveal a post-transcriptional negative feedback loop for maintaining proteostasis, but also uncover a mechanism that contributes to the impaired heat stress response in Huntington's disease.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Processamento de Proteína Pós-Traducional/genética , Retroalimentação Fisiológica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Humanos , Doença de Huntington/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos/genética , Proteostase/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA