Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Biol Toxicol ; 34(1): 51-64, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28382404

RESUMO

Drug-induced liver toxicity is a main reason for withdrawals of new drugs in late clinical phases and post-launch of the drugs. Thus, hepatotoxicity screening of drug candidates in pre-clinical stage is important for reducing drug attrition rates during the clinical development process. Here, we show commercially available hepatocytes that could be used for early toxicity evaluation of drug candidates. From our hepatic differentiation technology, we obtained highly pure (≥98%) hepatocytes from human embryonic stem cells (hESCs) having mature phenotypes and similar gene expression profiles with those of primary human tissues. Furthermore, we optimized 96-well culture condition of hESC-derived hepatocytes suitable for toxicity tests in vitro. To this end, we demonstrated the efficacy of our optimized hepatocyte model for predicting hepatotoxicity against the Chinese herbal medicines and showed that toxicity patterns from our hepatocyte model was similar to those of human primary cultured hepatocytes. We conclude that toxicity test using our hepatocyte model could be a good alternative cell source for pre-clinical study to predict potential hepatotoxicity in drug discovery industries.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/patologia , Fígado/patologia , Células-Tronco Pluripotentes/patologia , Diferenciação Celular/genética , Linhagem Celular , Sobrevivência Celular/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/patologia , Humanos
2.
Biotechnol Lett ; 38(5): 751-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26857609

RESUMO

OBJECTIVES: Adult stem cells (ASCs) have great potential for tissue regeneration; however, comparative studies of ASCs from different niches are required to understand the characteristics of each population for their potential therapeutic uses. RESULTS: We compared the proliferation, stem cell marker expression, and differentiation potential of ASCs from bone marrow, skin dermis, and adipose tissue. ASCs from bone marrow and skin dermis showed 50-100 % increased proliferation in comparison to the ASCs from adipose tissues. Furthermore, ASCs from each stem cell niche showed differential expression of stem cell marker genes, and preferentially differentiated into cell types of their tissue of origin. CONCLUSION: Different characters of each ASC might be major factors for their effective use for therapeutics and tissue regeneration.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular , Proliferação de Células , Nicho de Células-Tronco , Tecido Adiposo/citologia , Biomarcadores/análise , Células da Medula Óssea , Derme/citologia , Humanos
3.
Biomed Pharmacother ; 174: 116511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574616

RESUMO

Human iPSC-derived cardiac organoids (hiPSC-COs) for cardiotoxicity drug testing via the variety of cell lines and unestablished protocols may lead to differences in response results due to a lack of criteria for generation period and size. To ensure reliable drug testing, it is important for researchers to set optimal generation period and size of COs according to the cell line and protocol applied in their studies. Hence, we sought to propose a process to establish minimum criteria for the generation duration and size of hiPSC-COs for cardiotoxic drug testing. We generated hiPSC-COs of different sizes based on our protocol and continuously monitored organoids until they indicated a minimal beating rate change as a control that could lead to more accurate beating rate changes on drug testing. Calcium transients and physiological tests to assess the functionality of hiPSC-COs on selected generation period, which showed regular cardiac beating, and immunostaining assays to compare characteristics were performed. We explained the generation period and size that exhibited and maintained regular beating rate changes on hiPSC-COs, and lead to reliable response results to cardiotoxicity drugs. We anticipate that this study will offer valuable insights into considering the appropriate generation period and size of hiPSC-COs ensuring reliable outcomes in cardiotoxicity drug testing.


Assuntos
Cardiotoxicidade , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Organoides/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos
4.
Int J Stem Cells ; 17(2): 130-140, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38777829

RESUMO

Cardiac organoids have emerged as invaluable tools for assessing the impact of diverse substances on heart function. This report introduces guidelines for general requirements for manufacturing cardiac organoids and conducting cardiac organoid-based assays, encompassing protocols, analytical methodologies, and ethical considerations. In the quest to employ recently developed three-dimensional cardiac organoid models as substitutes for animal testing, it becomes imperative to establish robust criteria for evaluating organoid quality and conducting toxicity assessments. This guideline addresses this need, catering to regulatory requirements, and describes common standards for organoid quality and toxicity assessment methodologies, commensurate with current technological capabilities. While acknowledging the dynamic nature of technological progress and the potential for future comparative studies, this guideline serves as a foundational framework. It offers a comprehensive approach to standardized cardiac organoid testing, ensuring scientific rigor, reproducibility, and ethical integrity in investigations of cardiotoxicity, particularly through the utilization of human pluripotent stem cell-derived cardiac organoids.

5.
Cell Death Dis ; 15(5): 308, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693114

RESUMO

Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.


Assuntos
Fibrose , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Miócitos Cardíacos , Organoides , Humanos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Organoides/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia
6.
Gastroenterology ; 142(3): 602-11, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22138358

RESUMO

BACKGROUND & AIMS: Many studies of embryonic stem cells have investigated direct cell replacement of damaged tissues, but little is known about how donor cell-derived signals affect host tissue regeneration. We investigated the direct and indirect roles of human embryonic stem cell-derived cells in liver repair in mice. METHODS: To promote the initial differentiation of human embryonic stem cells into mesendoderm, we activated the ß-catenin signaling pathway with lithium; cells were then further differentiated into hepatocyte-like cells. The differentiated cells were purified by indocyanine green staining and laser microdissection and characterized by immunostaining, polymerase chain reaction, biochemical function, electron microscopy, and transplantation analyses. To investigate indirect effects of these cells, secreted proteins (secretomes) were analyzed by a label-free quantitative mass spectrometry. Carbon tetrachloride was used to induce acute liver injury in mice; cells or secreted proteins were administered by intrasplenic or intraperitoneal injection, respectively. RESULTS: The differentiated hepatocyte-like cells had multiple features of normal hepatocytes, engrafted efficiently into mice, and continued to have hepatic features; they promoted proliferation of host hepatocytes and revascularization of injured host liver tissues. Proteomic analysis identified proteins secreted from these cells that might promote host tissue repair. Injection of the secreted proteins into injured livers of mice promoted significant amounts of tissue regeneration without cell grafts. CONCLUSIONS: Hepatocyte-like cells derived from human embryonic stem cells contribute to recovery of injured liver tissues in mice, not only by cell replacement but also by delivering trophic factors that support endogenous liver regeneration.


Assuntos
Diferenciação Celular , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/cirurgia , Células-Tronco Embrionárias/transplante , Hepatócitos/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Regeneração Hepática , Fígado/patologia , Animais , Biomarcadores/metabolismo , Tetracloreto de Carbono , Diferenciação Celular/efeitos dos fármacos , Separação Celular/métodos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Técnicas de Cocultura , Modelos Animais de Doenças , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microdissecção e Captura a Laser , Cloreto de Lítio/farmacologia , Fígado/irrigação sanguínea , Fígado/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica , Neovascularização Fisiológica , Reação em Cadeia da Polimerase , Proteômica/métodos , Fatores de Tempo , Cicatrização
7.
Stem Cell Res Ther ; 14(1): 19, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737811

RESUMO

BACKGROUND: The generation of liver organoids recapitulating parenchymal and non-parenchymal cell interplay is essential for the precise in vitro modeling of liver diseases. Although different types of multilineage liver organoids (mLOs) have been generated from human pluripotent stem cells (hPSCs), the assembly and concurrent differentiation of multiple cell types in individual mLOs remain a major challenge. Particularly, most studies focused on the vascularization of mLOs in host tissue after transplantation in vivo. However, relatively little information is available on the in vitro formation of luminal vasculature in mLOs themselves. METHODS: The mLOs with luminal blood vessels and bile ducts were generated by assembling hepatic endoderm, hepatic stellate cell-like cells (HscLCs), and endothelial cells derived entirely from hPSCs using 96-well ultra-low attachment plates. We analyzed the effect of HscLC incorporation and Notch signaling modulation on the formation of both bile ducts and vasculature in mLOs using immunofluorescence staining, qRT-PCR, ELISA, and live-perfusion imaging. The potential use of the mLOs in fibrosis modeling was evaluated by histological and gene expression analyses after treatment with pro-fibrotic cytokines. RESULTS: We found that hPSC-derived HscLCs are crucial for generating functional microvasculature in mLOs. HscLC incorporation and subsequent vascularization substantially reduced apoptotic cell death and promoted the survival and growth of mLOs with microvessels. In particular, precise modulation of Notch signaling during a specific time window in organoid differentiation was critical for generating both bile ducts and vasculature. Live-cell imaging, a series of confocal scans, and electron microscopy demonstrated that blood vessels were well distributed inside mLOs and had perfusable lumens in vitro. In addition, exposure of mLOs to pro-fibrotic cytokines induced early fibrosis-associated events, including upregulation of genes associated with fibrotic induction and endothelial cell activation (i.e., collagen I, α-SMA, and ICAM) together with destruction of tissue architecture and organoid shrinkage. CONCLUSION: Our results demonstrate that mLOs can reproduce parenchymal and non-parenchymal cell interactions and suggest that their application can advance the precise modeling of liver diseases in vitro.


Assuntos
Hepatopatias , Células-Tronco Pluripotentes , Humanos , Ductos Biliares , Citocinas/metabolismo , Células Endoteliais , Fibrose , Fígado , Organoides/metabolismo , Receptores Notch
8.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37788099

RESUMO

Glioblastoma (GBM) is the most lethal brain cancer with a dismal prognosis. Stem-like GBM cells (GSCs) are a major driver of GBM propagation and recurrence; thus, understanding the molecular mechanisms that promote GSCs may lead to effective therapeutic approaches. Through in vitro clonogenic growth-based assays, we determined mitogenic activities of the ligand molecules that are implicated in neural development. We have identified that semaphorin 3A (Sema3A), originally known as an axon guidance molecule in the CNS, promotes clonogenic growth of GBM cells but not normal neural progenitor cells (NPCs). Mechanistically, Sema3A binds to its receptor neuropilin-1 (NRP1) and facilitates an interaction between NRP1 and TGF-ß receptor 1 (TGF-ßR1), which in turn leads to activation of canonical TGF-ß signaling in both GSCs and NPCs. TGF-ß signaling enhances self-renewal and survival of GBM tumors through induction of key stem cell factors, but it evokes cytostatic responses in NPCs. Blockage of the Sema3A/NRP1 axis via shRNA-mediated knockdown of Sema3A or NRP1 impeded clonogenic growth and TGF-ß pathway activity in GSCs and inhibited tumor growth in vivo. Taken together, these findings suggest that the Sema3A/NRP1/TGF-ßR1 signaling axis is a critical regulator of GSC propagation and a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia , Glioblastoma/patologia , Neuropilina-1/genética , Neoplasias Encefálicas/patologia , Fator de Crescimento Transformador beta
9.
Neoplasia ; 39: 100894, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972629

RESUMO

Recent studies indicate that signaling molecules traditionally associated with central nervous system function play critical roles in cancer. Dopamine receptor signaling is implicated in various cancers including glioblastoma (GBM) and it is a recognized therapeutic target, as evidenced by recent clinical trials with a selective dopamine receptor D2 (DRD2) inhibitor ONC201. Understanding the molecular mechanism(s) of the dopamine receptor signaling will be critical for development of potent therapeutic options. Using the human GBM patient-derived tumors treated with dopamine receptor agonists and antagonists, we identified the proteins that interact with DRD2. DRD2 signaling promotes glioblastoma (GBM) stem-like cells and GBM growth by activating MET. In contrast, pharmacological inhibition of DRD2 induces DRD2-TRAIL receptor interaction and subsequent cell death. Thus, our findings demonstrate a molecular circuitry of oncogenic DRD2 signaling in which MET and TRAIL receptors, critical factors for tumor cell survival and cell death, respectively, govern GBM survival and death. Finally, tumor-derived dopamine and expression of dopamine biosynthesis enzymes in a subset of GBM may guide patient stratification for DRD2 targeting therapy.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Dopamina , Glioblastoma/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Transdução de Sinais , Receptores de Dopamina D2/metabolismo
10.
Biomaterials ; 283: 121429, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217482

RESUMO

The bleeding disorder hemophilia A (HA) is caused by a single-gene (F8) defect and its clinical symptom can be substantially improved by a small increase in the plasma coagulation factor VIII (FVIII) level. In this study, we used F8-defective human induced pluripotent stem cells from an HA patient (F8d-HA hiPSCs) and F8-corrected (F8c) HA hiPSCs produced by CRISPR/Cas9 genome engineering of F8d-HA hiPSCs. We obtained a highly enriched population of CD157+ cells from CRISPR/Cas9-edited F8c-HA hiPSCs. These cells exhibited multiple cellular and functional phenotypes of endothelial cells (ECs) with significant levels of FVIII activity, which was not observed in F8d-HA hiPSC-ECs. After transplantation, the engineered F8c-HA hiPSC-ECs dramatically changed bleeding episodes in HA animals and restored plasma FVIII activity. Notably, grafting a high dose of ECs substantially reduced the bleeding time during multiple consecutive bleeding challenges in HA mice, demonstrating a robust hemostatic effect (90% survival). Furthermore, the engrafted ECs survived more than 3 months in HA mice and reversed bleeding phenotypes against lethal wounding challenges. We also produced F8c-HA hiPSC-derived 3D liver organoids by assembling three different cell types in microwell devices and confirmed its therapeutic effect in HA animals. Our data demonstrate that the combination of genome-engineering and iPSC technologies represents a novel modality that allows autologous cell-mediated gene therapy for treating HA.


Assuntos
Hemofilia A , Células-Tronco Pluripotentes Induzidas , Animais , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Organoides/metabolismo
11.
Biomaterials ; 286: 121575, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598335

RESUMO

Human in vitro hepatic models that faithfully recapitulate liver function are essential for successful basic and translational research. A limitation of current in vitro models, which are extensively used for drug discovery and toxicity testing, is the loss of drug metabolic function due to the low expression and activity of cytochrome P450 (CYP450) enzymes. Here, we aimed to generate human pluripotent stem cell-derived hepatic organoids (hHOs) with a high drug metabolic ability. We established a two-step protocol to produce hHOs from human pluripotent stem cells for long-term expansion and drug testing. Fully differentiated hHOs had multicellular composition and exhibited cellular polarity and hepatobiliary structures. They also displayed remarkable CYP450 activity and recapitulated the metabolic clearance, CYP450-mediated drug toxicity, and metabolism. Furthermore, hHOs successfully modeled Wilson's disease in terms of Cu metabolism, drug responses, and diagnostic marker expression and secretion. In conclusion, hHOs exhibit high capacity for drug testing and disease modeling. Hence, this hepatic model system provides an advanced tool for studying hepatic drug metabolism and diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/metabolismo , Modelos Biológicos , Organoides/metabolismo
12.
Cell Death Discov ; 7(1): 48, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723255

RESUMO

Detailed understanding of the pathogenesis and development of effective therapies for pulmonary fibrosis (PF) have been hampered by lack of in vitro human models that recapitulate disease pathophysiology. In this study, we generated alveolar organoids (AOs) derived from human pluripotent stem cells (hPSCs) for use as an PF model and for drug efficacy evaluation. Stepwise direct differentiation of hPSCs into alveolar epithelial cells by mimicking developmental cues in a temporally controlled manner was used to generate multicellular AOs. Derived AOs contained the expected spectrum of differentiated cells, including alveolar progenitors, type 1 and 2 alveolar epithelial cells and mesenchymal cells. Treatment with transforming growth factor (TGF-ß1) induced fibrotic changes in AOs, offering a PF model for therapeutic evaluation of a structurally truncated form (NP-011) of milk fat globule-EGF factor 8 (MFG-E8) protein. The significant fibrogenic responses and collagen accumulation that were induced by treatment with TGF-ß1 in these AOs were effectively ameliorated by treatment with NP-011 via suppression of extracellular signal-regulated kinase (ERK) signaling. Furthermore, administration of NP-011 reversed bleomycin-induced lung fibrosis in mice also via ERK signaling suppression and collagen reduction. This anti-fibrotic effect mirrored that following Pirfenidone and Nintedanib administration. Furthermore, NP-011 interacted with macrophages, which accelerated the collagen uptake for eliminating accumulated collagen in fibrotic lung tissues. This study provides a robust in vitro human organoid system for modeling PF and assessing anti-fibrotic mechanisms of potential drugs and suggests that modified MGF-E8 protein has therapeutic potential for treating PF.

13.
Biomedicines ; 9(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34829758

RESUMO

Milk fat globule-EGF factor 8 (MFG-E8) protein is known as an immunomodulator in various diseases, and we previously demonstrated the anti-fibrotic role of MFG-E8 in liver disease. Here, we present a truncated form of MFG-E8 that provides an advanced therapeutic benefit in treating liver fibrosis. The enhanced therapeutic potential of the modified MFG-E8 was demonstrated in various liver fibrosis animal models, and the efficacy was further confirmed in human hepatic stellate cells and a liver spheroid model. In the subsequent analysis, we found that the modified MFG-E8 more efficiently suppressed transforming growth factor ß (TGF-ß) signaling than the original form of MFG-E8, and it deactivated the proliferation of hepatic stellate cells in the liver disease environment through interfering with the interactions between integrins (αvß3 & αvß5) and TGF-ßRI. Furthermore, the protein preferentially delivered in the liver after administration, and the safety profiles of the protein were demonstrated in male and female rat models. Therefore, in conclusion, this modified MFG-E8 provides a promising new therapeutic strategy for treating fibrotic diseases.

14.
Biomaterials ; 269: 120529, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33257114

RESUMO

Recent advances in pluripotent stem cell technology provide an alternative source of human hepatocytes to overcome the limitations of current toxicity tests. However, this approach requires optimization and standardization before it can be used as a fast and reliable toxicity screening system. Here, we designed and tested microwell culture platforms with various diameters. We found that large quantities of uniformly-sized hepatocyte-like cell (HLC) spheroids (3D-uniHLC-Ss) could be efficiently and reproducibly generated in a short period time from a small number of differentiating human pluripotent stem cells (hPSCs). The hPSC-3D-uniHLC-Ss that were produced in 500-µm diameter microwells consistently exhibited high expressions of hepatic marker genes and had no significant signs of cell death. Importantly, a hepatic master gene hepatocyte nuclear factor 4α (HNF4α) was maintained at high levels, and the epithelial-mesenchymal transition was significantly attenuated in hPSC-3D-uniHLC-Ss. Additionally, when compared with 3D-HLC-Ss that were produced in other 3D platforms, hPSC-3D-uniHLC-Ss showed significantly higher hepatic gene expressions and drug-metabolizing activity of the enzyme, CYP3A4. Imaging-based drug toxicity studies demonstrated that hPSC-3D-uniHLC-Ss exhibited enhanced sensitivity to various hepatotoxicants, compared to HLCs, which were differentiated under 2D conditions. Precise prediction of drug-induced hepatotoxicity is a crucial step in the early phases of drug discovery. Thus, the hPSC-3D-uniHLC-Ss produced using our microwell platform could be used as an imaging-based toxicity screening system to predict drug hepatotoxicity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes , Técnicas de Cultura de Células , Diferenciação Celular , Hepatócitos , Humanos , Fígado
15.
Stem Cells ; 27(11): 2646-54, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19711444

RESUMO

In early embryonic development, spatial gradients of diffusible signaling molecules play important roles in controlling differentiation of cell types or arrays in diverse tissues. Thus, the concentration of exogenous cytokines or growth factors at any given time is crucial to the formation of an enriched population of a desired cell type from primitive stem cells in vitro. Microfluidic technology has proven very useful in the creation of cell-friendly microenvironments. Such techniques are, however, currently limited to a few cell types. Improved versatility is required if these systems are to become practically applicable to stem cells showing various plasticity ranges. Here, we built a microfluidic platform in which cells can be exposed to stable concentration gradients of various signaling molecules for more than a week with only minimal handling and no external power source. To maintain stability of the gradient concentration, the osmotic pumping performance was optimized by balancing the capillary action and hydraulic pressure in the inlet reagent reservoirs. We cultured an enriched population of neural progenitors derived from human embryonic stem cells in our microfluidic chamber for 8 days under continuous cytokine gradients (sonic hedgehog, fibroblast growth factor 8, and bone morphogenetic protein 4). Neural progenitors successfully differentiated into neurons, generating a complex neural network. The average numbers of both neuronal cell body clusters and neurite bundles were directly proportional to sonic hedgehog concentrations in the gradient chip. The system was shown to be useful for both basic and translational research, with straightforward mechanisms and operational schemes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Citocinas/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/métodos , Neurônios/citologia , Células-Tronco/citologia , Proteína Morfogenética Óssea 4/química , Proteína Morfogenética Óssea 4/farmacologia , Células Cultivadas , Citocinas/química , Fator 8 de Crescimento de Fibroblasto/química , Fator 8 de Crescimento de Fibroblasto/farmacologia , Citometria de Fluxo , Proteínas Hedgehog/química , Proteínas Hedgehog/farmacologia , Humanos , Imuno-Histoquímica , Modelos Teóricos , Neurônios/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
16.
J Korean Neurosurg Soc ; 63(2): 163-170, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32120456

RESUMO

OBJECTIVE: Milk fat globule-epidermal growth factor VIII (MFG-E8) may play a key role in inflammatory responses and has the potential to function as a neuroprotective agent for ameliorating brain injury in cerebral infarction. This study aimed to determine the role of MFG-E8 in brain injury in the subacute phase of cerebral ischemia in a rat model. METHODS: Focal cerebral ischemia was induced in rats by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, rats were randomly assigned to two groups and treated with either recombinant human MFG-E8 or saline. Functional outcomes were assessed using the modified Neurological Severity Score (mNSS), and infarct volumes were evaluated using histology. Anti-inflammation, angiogenesis, and neurogenesis were assessed using immunohistochemistry with antibodies against ionized calcium-binding adapter molecule 1 (Iba-1), rat endothelial cell antigen-1 (RECA-1), and bromodeoxyuridine (BrdU)/doublecortin (DCX), respectively. RESULTS: Our results showed that intravenous MFG-E8 treatment did not reduce the infarct volume; however, the mNSS test revealed that neurobehavioral deficits were significantly improved in the MFG-E8-treated group than in the vehicle group. Immunofluorescence staining revealed a significantly lower number of Iba-1-positive cells and higher number of RECA-1 in the periinfarcted brain region, and significantly higher numbers of BrdU- and DCX-positive cells in the subventricular zone in the MFG-E8-treated group than in the vehicle group. CONCLUSION: Our findings suggest that MFG-E8 improves neurological function by suppressing inflammation and enhancing angiogenesis and neuronal proliferation in the subacute phase of cerebral infarction.

17.
Stem Cell Res ; 43: 101732, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32087526

RESUMO

Endoplasmic reticulum stress (ER stress) leads an unfolded protein response (UPR) which results in internal cellular responses such as proteostasis and protein clearance. Recently, several reports demonstrated that the ER stress in stem cells could affect their stemness and fates to differentiate into certain lineages. However, the potential for controlling differentiation and function of cells by regulating ER stress needs to be further addressed. Here, we demonstrated that relieving the ER stress in cell cultures enhances the functionalities of hPSC-derived hepatocytes and other hepatic cells to be used in various research fields. Firstly, we found that UPR genes were up-regulated during hepatic differentiation of hPSCs and treatment of ER stress reliever at the hepatic induction stage of the differentiation resulted the enhanced mature marker expressions and glycogen storage of the differentiated hepatocytes. The treatment of ER stress reliever also improved the maintenance of hepatic characteristics in long-term culture of hPSC-derived hepatocytes. Furthermore, relieving ER stress increased the hepatic marker expression and CYP3A4 activity in hepatoma cell lines and human primary hepatocytes. Taken together, our findings indicate that regulating ER stress of in vitro cultured hepatocytes might be a crucial factor for enhancing differentiation, function and maintaining hepatic identity.


Assuntos
Estresse do Retículo Endoplasmático/genética , Hepatócitos/metabolismo , Células Cultivadas , Humanos
18.
Cells ; 9(5)2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357563

RESUMO

Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have a well-orchestrated program for differentiation and self-renewal. However, the structural features of unique proteostatic-maintaining mechanisms in hPSCs and their features, distinct from those of differentiated cells, in response to cellular stress remain unclear. We evaluated and compared the morphological features and stress response of hPSCs and fibroblasts. Compared to fibroblasts, electron microscopy showed simpler/fewer structures with fewer networks in the endoplasmic reticulum (ER) of hPSCs, as well as lower expression of ER-related genes according to meta-analysis. As hPSCs contain low levels of binding immunoglobulin protein (BiP), an ER chaperone, thapsigargin treatment sharply increased the gene expression of the unfolded protein response. Thus, hPSCs with decreased chaperone function reacted sensitively to ER stress and entered apoptosis faster than fibroblasts. Such ER stress-induced apoptotic processes were abolished by tauroursodeoxycholic acid, an ER-stress reliever. Hence, our results revealed that as PSCs have an underdeveloped structure and express fewer BiP chaperone proteins than somatic cells, they are more susceptible to ER stress-induced apoptosis in response to stress.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Células-Tronco Pluripotentes/citologia , Apoptose/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Morte Celular/fisiologia , Retículo Endoplasmático/fisiologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
19.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252475

RESUMO

Human pluripotent stem cells (hPSCs) including human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have been extensively studied as an alternative cellular model for recapitulating phenotypic and pathophysiologic characters of human diseases. Particularly, hiPSCs generated from the genetic disease somatic cells could provide a good cellular model to screen potential drugs for treating human genetic disorders. However, the patient-derived cellular model has a limitation when the patient samples bearing genetic mutations are difficult to obtain due to their rarity. Thus, in this study, we explored the potential use of hPSC-derived Wilson's disease model generated without a patient sample to provide an alternative approach for modeling human genetic disease by applying gene editing technology. Wilson's disease hPSCs were generated by introducing a R778L mutation in the ATP7B gene (c.2333G>T) using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system into wildtype hESCs. Established Wilson's disease hESCs were further differentiated into hepatocyte-like cells (HLCs) and analyzed for disease phenotypes and responses against therapeutic agent treatment. R778L mutation in the ATP7B gene was successfully introduced into wildtype hESCs, and the introduction of the mutation neither altered the self-renewal ability of hESCs nor the differentiation capability into HLCs. However, R778L mutation-introduced HLCs exhibited higher vulnerability against excessive copper supplementation than wildtype HLCs. Finally, the applicability of the R778L mutation introduced HLCs in drug screening was further demonstrated using therapeutic agents against the Wilson's diseases. Therefore, the established model in this study could effectively mimic the Wilson's disease without patient's somatic cells and could provide a reliable alternative model for studying and drug screening of Wilson's disease.


Assuntos
Cobre/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Degeneração Hepatolenticular/genética , Células-Tronco Embrionárias Humanas/metabolismo , Diferenciação Celular , Degeneração Hepatolenticular/patologia , Humanos
20.
Cancers (Basel) ; 12(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050643

RESUMO

Milk fat globule-EGF factor 8 (MFG-E8) is an anti-inflammatory glycoprotein that mediates a wide spectrum of pathophysiological processes. MFG-E8 has been studied as a key regulator of cancer cell invasion, migration, and proliferation in different tissues and organs. However, potential roles of MFG-E8 in the growth and progression of liver cancer have not been investigated to date. Here, we analyzed 33 human hepatocellular carcinoma (HCC) samples and found that levels of MFG-E8 expression were significantly higher in HCC cells than in normal liver tissues. In addition, our in vitro gain-of-function study in three different HCC cell lines revealed that overexpression of MFG-E8 promoted the proliferation and migration of HCC cells, as determined by RT-qPCR, MTT assays, and wound healing analyses. Conversely, an MFG-E8 loss-of function study showed that proliferation capacity was significantly reduced by MFG-E8 knockdown in HCC cells. Additionally, MFG-E8 activity-neutralizing antibodies profoundly inhibited both migration and proliferation of HCC cells, attenuating their tumorigenic properties. These reductions in migration and proliferation were rescued by treatment of HCC cells with recombinant MFG-E8 protein. Furthermore, an in vivo HCC xenograft study showed that the number of proliferating HCC cells and tumor volume/weight were all significantly increased by MFG-E8 overexpression, compared to control mice. These results clearly show that MFG-E8 plays an important role in HCC progression and may provide a basis for future mechanistic studies and new strategies for the treatment of liver cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA