Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 12(1): 15-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104153

RESUMO

The discovery of high-temperature superconductivity in a layered iron arsenide has led to an intensive search to optimize the superconducting properties of iron-based superconductors by changing the chemical composition of the spacer layer between adjacent anionic iron arsenide layers. Superconductivity has been found in iron arsenides with cationic spacer layers consisting of metal ions (for example, Li(+), Na(+), K(+), Ba(2+)) or PbO- or perovskite-type oxide layers, and also in Fe(1.01)Se (ref. 8) with neutral layers similar in structure to those found in the iron arsenides and no spacer layer. Here we demonstrate the synthesis of Li(x)(NH(2))(y)(NH(3))(1-y)Fe(2)Se(2) (x~0.6; y~0.2), with lithium ions, lithium amide and ammonia acting as the spacer layer between FeSe layers, which exhibits superconductivity at 43(1) K, higher than in any FeSe-derived compound reported so far. We have determined the crystal structure using neutron powder diffraction and used magnetometry and muon-spin rotation data to determine the superconducting properties. This new synthetic route opens up the possibility of further exploitation of related molecular intercalations in this and other systems to greatly optimize the superconducting properties in this family.

2.
Soc Sci Med ; 343: 116542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38290399

RESUMO

RATIONALE: Meta-reviews synthesising research on social class and mental health and wellbeing are currently limited and focused on specific facets of social class (e.g., social capital) or mental health and wellbeing (e.g., mental health disorders), and none sought to identify mechanisms in this relationship. OBJECTIVES: The present meta-review sought to (1) assess the overall relationship between social class and mental health and wellbeing, (2) determine the mechanisms that act in this relationship, and (3) evaluate the strength of evidence available. METHODS: The protocol was prospectively registered on PROSPERO (CRD42021214731). We systematically searched twelve databases in September 2022 and identified 149 eligible reviews from 38,257 records screened. Quality of evidence was assessed with the JBI levels of evidence and risk of bias with the ROBIS tool. RESULTS: A large but low-quality evidence base points to class-based inequalities in mental health and wellbeing, with the strongest available evidence linking lower social positions to an increased risk of depression. In terms of different facets of stratification, the best available evidence suggests that deprivation (e.g., poverty), socioeconomic status, income, and subjective social status are consequential for individuals' mental health and wellbeing. However, high-quality evidence for the roles of education, occupation, other economic resources (e.g., wealth), and social capital is currently limited. Most reviews employed individual-level measures (e.g., income), as opposed to interpersonal- (e.g., social capital) or community-level (e.g., neighbourhood deprivation) measures. Considering mechanisms, we found some evidence for mediation via subjective social status, sense of control, and experiences of stress and trauma. There was also some evidence that higher socioeconomic status can provide a buffer for neighbourhood deprivation, lower social capital, and lower subjective social status. CONCLUSIONS: Future research employing experimental or quasi-experimental methods, and systematic reviews with a low risk of bias, are necessary to advance this area of research.


Assuntos
Saúde Mental , Classe Social , Humanos , Saúde Mental/estatística & dados numéricos , Fatores Socioeconômicos , Depressão/psicologia , Depressão/epidemiologia
3.
Inorg Chem ; 51(4): 2121-9, 2012 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-22296451

RESUMO

The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, ß = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, ß = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ∼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the CuX(2)(pyzO)(H(2)O)(2) complexes are compared to the related CuX(2)(pyrazine) materials.

4.
J Am Chem Soc ; 132(30): 10467-76, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20662524

RESUMO

The response of the superconducting state and crystal structure of LiFeAs to chemical substitutions on both the Li and the Fe sites has been probed using high-resolution X-ray and neutron diffraction measurements, magnetometry, and muon-spin rotation spectroscopy. The superconductivity is extremely sensitive to composition: Li-deficient materials (Li(1-y)Fe(1+y)As with Fe substituting for Li) show a very rapid suppression of the superconducting state, which is destroyed when y exceeds 0.02, echoing the behavior of the Fe(1+y)Se system. Substitution of Fe by small amounts of Co or Ni results in monotonic lowering of the superconducting transition temperature, T(c), and the superfluid stiffness, rho(s), as the electron count increases. T(c) is lowered monotonically at a rate of 10 K per 0.1 electrons added per formula unit irrespective of whether the dopant is Co and Ni, and at higher doping levels superconductivity is completely suppressed. These results and the demonstration that the superfluid stiffness in these LiFeAs-derived compounds is higher than in all of the iron pnictide materials underlines the unique position that LiFeAs occupies in this class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA