Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gastroenterology ; 138(7): 2531-40, 2540.e1-4, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20188101

RESUMO

BACKGROUND & AIMS: Integrin contact with basement membrane is a major determinant of epithelial cell polarity. beta1 integrin heterodimers are the primary receptors for basement membrane in pancreatic acinar cells, which function to synthesize and directionally secrete digestive enzymes into a central lumen. Aberrant acinar secretion and exposure of the parenchyma to digestive enzyme activity lead to organ damage and pancreatitis. METHODS: beta1 integrin conditional knockout mice were crossed to Ptf1a-Cre mice to ablate beta1 integrin in the pancreas. Histopathology of aged and cerulein-treated mice were assessed by histology and immunocytochemistry. Directional secretion was determined in vitro by FM1-43 loading with cerulein stimulation. RESULTS: Pancreas-specific ablation of beta1 integrin led to progressive organ degeneration, associated with focal acinar cell necrosis and ductal metaplasia along with widespread inflammation and collagen deposition. beta1 Integrin-null pancreata were highly susceptible to cerulein-induced acute pancreatitis, displaying an enhanced level of damage with no loss in regeneration. Degenerating beta1 integrin-null pancreata were marked by disruption of acinar cell polarity. Protein kinase C epsilon, normally localized apically, was found in the cytoplasm where it can lead to intracellular digestive enzyme activation. beta1 Integrin-null acinar cells displayed indiscriminate secretion to all membrane surfaces, consistent with an observed loss of basolateral membrane localization of Munc18c, which normally prevents basal secretion of digestive enzymes. CONCLUSIONS: Ablation of beta1 integrin induces organ atrophy by disrupting acinar cell polarity and exposing the pancreatic parenchyma to digestive enzymes.


Assuntos
Integrina beta1/fisiologia , Pâncreas Exócrino/patologia , Fatores Etários , Amilases/sangue , Animais , Polaridade Celular , Ceruletídeo/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Proteína Quinase C-alfa/análise , Proteína Quinase C-épsilon/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA