Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 133(9): 772-788, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37681352

RESUMO

Myocarditis is a challenging inflammatory disease of the heart, and better understanding of its pathogenesis is needed to develop specific drug therapies. Epoxyeicosatrienoic acids (EETs), active molecules synthesized by CYP (cytochrome P450) enzymes from arachidonic acids and hydrolyzed to less active dihydroxyeicosatrienoic acids by sEH (soluble epoxide hydrolase), have been attributed anti-inflammatory activity. Here, we investigated whether EETs have immunomodulatory activity and exert protective effects on coxsackie B3 virus-induced myocarditis. Viral infection altered eicosanoid epoxide and diol levels in both patients with myocarditis and in the murine heart and correlated with the increased expression and activity of sEH after coxsackie B3 virus infection. Administration of a sEH inhibitor prevented coxsackie B3 virus-induced cardiac dysfunction and inflammatory infiltration. Importantly, EET/sEH inhibitor treatment attenuated viral infection or improved viral resistance by activating type I IFN (interferon) signaling. At the molecular level, EETs enhanced the interaction between GSK3ß (glycogen synthase kinase-3 beta) and TBK1 (TANK-binding kinase 1) to promote IFN-ß production. Our findings revealed that EETs and sEH inhibitors prevent the progress of coxsackie B3 virus-induced myocarditis, particularly by promoting viral resistance by increasing IFN production.

2.
Proc Natl Acad Sci U S A ; 119(47): e2203824119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375051

RESUMO

Autophagy is a cellular catabolic pathway generally thought to be neuroprotective. However, autophagy and in particular its upstream regulator, the ULK1 kinase, can also promote axonal degeneration. We examined the role and the mechanisms of autophagy in axonal degeneration using a mouse model of contusive spinal cord injury (SCI). Consistent with activation of autophagy during axonal degeneration following SCI, autophagosome marker LC3, ULK1 kinase, and ULK1 target, phospho-ATG13, accumulated in the axonal bulbs and injured axons. SARM1, a TIR NADase with a pivotal role in axonal degeneration, colocalized with ULK1 within 1 h after SCI, suggesting possible interaction between autophagy and SARM1-mediated axonal degeneration. In our in vitro experiments, inhibition of autophagy, including Ulk1 knockdown and ULK1 inhibitor, attenuated neurite fragmentation and reduced accumulation of SARM1 puncta in neurites of primary cortical neurons subjected to glutamate excitotoxicity. Immunoprecipitation data demonstrated that ULK1 physically interacted with SARM1 in vitro and in vivo and that SAM domains of SARM1 were necessary for ULK1-SARM1 complex formation. Consistent with a role in regulation of axonal degeneration, in primary cortical neurons ULK1-SARM1 interaction increased upon neurite damage. Supporting a role for autophagy and ULK1 in regulation of SARM1 in axonal degeneration in vivo, axonal ULK1 activation and accumulation of SARM1 were both decreased after SCI in Becn1+/- autophagy hypomorph mice compared to wild-type (WT) controls. These findings suggest a regulatory crosstalk between autophagy and axonal degeneration pathways, which is mediated through ULK1-SARM1 interaction and contributes to the ability of SARM1 to accumulate in injured axons.


Assuntos
Proteínas do Domínio Armadillo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas do Citoesqueleto , Traumatismos da Medula Espinal , Animais , Camundongos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Autofagia , Axônios/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Camundongos Knockout , Traumatismos da Medula Espinal/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo
3.
J Neuroinflammation ; 21(1): 83, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581043

RESUMO

BACKGROUND: It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS: To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS: TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS: TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Animais , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/patologia , Encéfalo/metabolismo
4.
Opt Express ; 32(8): 14594-14606, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859400

RESUMO

Nonlinear sum frequency generation (SFG) and difference frequency generation (DFG) are fundamental methods to obtain new light sources for various applications. However, most of the on-chip SFG and DFG are based on conventional resonators, lacking robustness against fabrication defects. Here, we demonstrate topologically protected SFG and DFG in a second-order topological photonic system. The mechanism is based on the nonlinear interaction between three high-Q corner modes inside dual topological band gaps. The frequency matching condition for SFG and DFG is precisely satisfied by designing a valley-photonic-crystal-like topological system, which provides more freedoms to tune the corner modes. The topological SFG and DFG are achieved with high conversion efficiency, and the underlying topological physics is revealed. This work opens up avenues toward topologically protected nonlinear frequency conversion, and can find applications in the fields of on-chip single-photon detections and optical quantum memories with robustness against defects.

5.
Brain Behav Immun ; 120: 439-451, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925420

RESUMO

Older patients with spinal cord injury (SCI) have different features with regard to neurological characteristics after injury. Recent large-scale longitudinal population-based studies showed that individuals with SCI are at a higher risk of developing dementia than non-SCI patients, indicating that SCI is a potential risk factor for dementia. Aging is known to potentiate inflammation and neurodegeneration at the injured site leading to impaired recovery from SCI. However, no research has been aimed at studying the mechanisms of SCI-mediated cognitive impairment in the elderly. The present study examined neurobehavioral and molecular changes in the brain and the underlying mechanisms associated with brain dysfunction in aged C57BL/6 male mice using a contusion SCI model. At 2 months post-injury, aged mice displayed worse performance in locomotor, cognitive and depressive-like behavioral tests compared to young adult animals. Histopathology in injured spinal cord tissue was exacerbated in aged SCI mice. In the brain, transcriptomic analysis with NanoString neuropathology panel identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. These findings were further validated by flow cytometry, which demonstrated increased myeloid and lymphocytes infiltration at both the injured site and brain of aged mice. Moreover, SCI in aged mice altered microglial function and dysregulated autophagy in microglia, resulting in worsened neurodegeneration. Taken together, our data indicate that old age exacerbates neuropathological changes in both the injured spinal cord and remote brain regions leading to poorer functional outcomes, at least in part, through altered inflammation and autophagy function.

6.
Brain Behav Immun ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986724

RESUMO

Aged individuals with spinal cord injury (SCI) are prevalent with increased mortality and worse outcomes. SCI can cause secondary brain neuroinflammation and neurodegeneration. However, the mechanisms contributing to SCI-induced brain dysfunction are poorly understood. Cell-to-cell signaling through extracellular vesicles (EVs) has emerged as a critical mediator of neuroinflammation, including at a distance through circulation. We have previously shown that SCI in young adult (YA) male mice leads to robust changes in plasma EV count and microRNAs (miRs) content. Here, our goal was to investigate the impact of old age on EVs and brain after SCI. At 24 h post-injury, there was no difference in particle count or size distribution between YA and aged mice. However, aged animals increased expression of EV marker CD63 with SCI. Using the Fireplex® miRs assay, Proteomics, and mass spectrometry-based Lipidomics, circulating EVs analysis identified distinct profiles of miRs, proteins, and lipid components in old and injury animals. In vitro, plasma EVs from aged SCI mice, at a lower concentration comparable to those of YA SCI mice, induced the secretion of pro-inflammatory cytokines and neuronal apoptosis. Systemic administration of plasma EVs from SCI animals was sufficient to impair general physical function and neurological function in intact animals, which is associated with pro-inflammatory changes in the brain. Furthermore, plasma EVs from young animals had rejuvenating effects on naïve aged mice. Collectively, these studies identify the critical changes in circulating EVs cargoes after SCI and in aged animals and support a potential EV-mediated mechanism for SCI-induced brain changes.

7.
Analyst ; 149(12): 3444-3455, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38738630

RESUMO

Numerous studies have revealed a close correlation between the levels of apolipoproteins (Apos) (including lipoprotein(a) [Lp(a)]) and an increased risk of cardiovascular disease in recent decades. However, clinically, lipid profiling remains limited to the conventional plasma levels of cholesterol, triglyceride, ApoA1, and ApoB, which brings the necessity to quantify more apolipoproteins in human plasma. In this study, we simultaneously quantified 13 apolipoproteins and Lp(a) in 5 µL of human plasma using the LC-MS/MS platform. A method was developed for the precise detection of Lp(a), ApoA1, A2, A5, B, C1, C2, C3, D, E, H, L1, M, and J. Suitable peptides were selected and optimized to achieve clear separation of each peak. Method validation consisting of linearity, sensitivity, accuracy and precision, recovery, and matrix effects was evaluated. The intra-day CV ranged from 0.58% to 14.2% and the inter-day CV ranged from 0.51% to 13.3%. The recovery rates ranged from 89.8% to 113.7%, while matrix effects ranged from 85.4% to 113.9% for all apolipoproteins and Lp(a). Stability tests demonstrated that these apolipoproteins remained stable for 3 days at 4 °C and 7 days at -20 °C. This validated method was successfully applied to human plasma samples obtained from 45 volunteers. The quantitative results of ApoA1, ApoB, and Lp(a) exhibited a close correlation with the results from the immunity transmission turbidity assay. Collectively, we developed a robust assay that can be used for high-throughput quantification of apolipoproteins and Lp(a) simultaneously for investigating related risk factors in patients with dyslipidemia.


Assuntos
Apolipoproteínas , Lipoproteína(a) , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Apolipoproteínas/sangue , Lipoproteína(a)/sangue , Cromatografia Líquida/métodos , Análise Química do Sangue/métodos , Espectrometria de Massa com Cromatografia Líquida
8.
J Mol Cell Cardiol ; 185: 13-25, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871528

RESUMO

BACKGROUND: Epoxyeicosatrienoic acids (EETs), which exert multiple endogenous protective effects, are hydrolyzed into less active dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). However, commercial drugs related to EETs or sEH are not yet in clinical use. METHODS: Firstly, the plasma concentration of EETs and DHETs of 316 patients with heart failure (HF) were detected and quantitated by liquid chromatography-tandem mass spectrometry. Then, transverse aortic constriction (TAC)-induced HF was introduced in cardiomyocyte-specific Ephx2-/- mice. Moreover, Western blot, real-time PCR, luciferase reporter, ChIP assays were employed to explore the underlying mechanism. Finally, multiple sEH inhibitors were designed, synthesized, and validated in vitro and in vivo. RESULTS: The ratios of DHETs/EETs were increased in the plasma from patients with HF. Meanwhile, the expression of sEH was upregulated in the heart of patients and mice with HF, especially in cardiomyocytes. Cardiomyocyte-specific Ephx2-/- mice ameliorated cardiac dysfunction induced by TAC. Consistently, Ephx2 knockdown protected Angiotensin II (AngII)-treated cardiomyocytes via increasing EETs in vitro. Mechanistically, AngII could enhance the expression of transcript factor Krüppel-like factor 15 (KLF15), which in turn upregulated sEH. Importantly, glimepiride was identified as a novel sEH inhibitor, which benefited from the elevated EETs during HF. CONCLUSIONS: Glimepiride attenuates HF in mice in part by increasing EETs. CLINICAL TRIAL IDENTIFIER: NCT03461107 (https://clinicaltrials.gov).


Assuntos
Epóxido Hidrolases , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Insuficiência Cardíaca/tratamento farmacológico , Eicosanoides/metabolismo , Coração
9.
J Neuroinflammation ; 20(1): 197, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653491

RESUMO

BACKGROUND: Medical advances have made it increasingly possible for spinal cord injury (SCI) survivors to survive decades after the insult. But how SCI affects aging changes and aging impacts the injury process have received limited attention. Extracellular vesicles (EVs) are recognized as critical mediators of neuroinflammation after CNS injury, including at a distance from the lesion site. We have previously shown that SCI in young male mice leads to robust changes in plasma EV count and microRNA (miR) content. Here, our goal was to investigate the impact of biological sex and aging on EVs and brain after SCI. METHODS: Young adult age-matched male and female C57BL/6 mice were subjected to SCI. At 19 months post-injury, total plasma EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA). EVs miR cargo was examined using the Fireplex® assay. The transcriptional changes in the brain were assessed by a NanoString nCounter Neuropathology panel and validated by Western blot (WB) and flow cytometry (FC). A battery of behavioral tests was performed for assessment of neurological function. RESULTS: Transcriptomic changes showed a high number of changes between sham and those with SCI. Sex-specific changes were found in transcription networks related to disease association, activated microglia, and vesicle trafficking. FC showed higher microglia and myeloid counts in the injured tissue of SCI/Female compared to their male counterparts, along with higher microglial production of ROS in both injured site and the brain. In the latter, increased levels of TNF and mitochondrial membrane potential were seen in microglia from SCI/Female. WB and NTA revealed that EV markers are elevated in the plasma of SCI/Male. Particle concentration in the cortex increased after injury, with SCI/Female showing higher counts than SCI/Male. EVs cargo analysis revealed changes in miR content related to injury and sex. Behavioral testing confirmed impairment of cognition and depression at chronic time points after SCI in both sexes, without significant differences between males and females. CONCLUSIONS: Our study is the first to show sexually dimorphic changes in brain after very long-term SCI and supports a potential sex-dependent EV-mediated mechanism that contributes to SCI-induced brain changes.


Assuntos
Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Encéfalo , Traumatismos da Medula Espinal/complicações , Cognição
10.
J Intern Med ; 294(4): 515-530, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37184278

RESUMO

BACKGROUND: Phenylacetylglutamine (PAGln)-a newly discovered microbial metabolite produced by phenylalanine metabolism-is reportedly associated with cardiovascular events via adrenergic receptors. Nonetheless, its association with cardiovascular outcomes in heart failure (HF) patients remains unknown. OBJECTIVES: This study aimed to prospectively investigate the prognostic value of PAGln for HF. METHODS: Plasma PAGln levels were quantified by liquid chromatography-tandem mass spectrometry. We first assessed the association between plasma PAGln levels and the incidence of adverse cardiovascular events in 3152 HF patients (including HF with preserved and reduced ejection fraction) over a median follow-up period of 2 years. The primary endpoint was the composite of cardiovascular death or heart transplantation. We then assessed the prognostic role of PAGln in addition to the classic biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP). The correlation between PAGln levels and ß-blocker use was also investigated. RESULTS: In total, 520 cardiovascular deaths or heart transplantations occurred in the HF cohort. Elevated PAGln levels were independently associated with a higher risk of the primary endpoint in a dose-response manner, regardless of HF subtype. Concurrent assessment of PAGln and NT-proBNP levels enhanced risk stratification among HF patients. PAGln further showed prognostic value at low NT-proBNP levels. Additionally, the interaction effects between PAGln and ß-blocker use were not significant. CONCLUSIONS: Plasma PAGln levels are an independent predictor of an increased risk of adverse cardiovascular events in HF. Our work could provide joint and complementary prognostic value to NT-proBNP levels in HF patients.


Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico/fisiologia , Biomarcadores , Prognóstico , Fragmentos de Peptídeos , Peptídeo Natriurético Encefálico
11.
Brain Behav Immun ; 114: 22-45, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37557959

RESUMO

Approximately 20-68% of traumatic brain injury (TBI) patients exhibit trauma-associated olfactory deficits (OD) which can compromise not only the quality of life but also cognitive and neuropsychiatric functions. However, few studies to date have examined the impact of experimental TBI on OD. The present study examined inflammation and neuronal dysfunction in the olfactory bulb (OB) and the underlying mechanisms associated with OD in male mice using a controlled cortical impact (CCI) model. TBI caused a rapid inflammatory response in the OB as early as 24 h post-injury, including elevated mRNA levels of proinflammatory cytokines, increased numbers of microglia and infiltrating myeloid cells, and increased IL1ß and IL6 production in these cells. These changes were sustained for up to 90 days after TBI. Moreover, we observed significant upregulation of the voltage-gated proton channel Hv1 and NOX2 expression levels, which were predominantly localized in microglia/macrophages and accompanied by increased reactive oxygen species production. In vivo OB neuronal firing activities showed early neuronal hyperexcitation and later hypo-neuronal activity in both glomerular layer and mitral cell layer after TBI, which were improved in the absence of Hv1. In a battery of olfactory behavioral tests, WT/TBI mice displayed significant OD. In contrast, neither Hv1 KO/TBI nor NOX2 KO/TBI mice showed robust OD. Finally, seven days of intranasal delivery of a NOX2 inhibitor (NOX2ds-tat) ameliorated post-traumatic OD. Collectively, these findings highlight the importance of OB neuronal networks and its role in TBI-mediated OD. Thus, targeting Hv1/NOX2 may be a potential intervention for improving post-traumatic anosmia.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos do Olfato , Humanos , Masculino , Camundongos , Animais , Bulbo Olfatório , Qualidade de Vida , Lesões Encefálicas Traumáticas/metabolismo , Olfato/fisiologia , Microglia/metabolismo , Transtornos do Olfato/etiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
J Clin Biochem Nutr ; 73(3): 178-184, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970545

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) plays an important role in a variety of inflammatory diseases, as well as peripheral and central immune responses. At present, there are few reports about the role of LRRK2 in lung cancer, and need to be further explored. The main purpose of this study is to explore the role and mechanism of LRRK2 in lung cancer. The results revealed that the expression of LRRK2 was increased in the tissues of lung cancer patient and lung cancer cells. Further studies found that interference with LRRK2 expression significantly induced the apoptosis, and promoted the expression of caspase-3, caspase-9, and Bax. More importantly, si-LRRK2 inhibited the expression of VEGF and P-gp, indicating inhibition of cell proliferation and drug resistance. What's more, LRRK2 regulated TLR4/NF-κB signaling pathways and NLRP3 inflammasome, and TLR4/NF-κB pathways was involved in the molecular mechanism of LRRK2 on lung cancer cells. In conclusion, this study suggested that the mechanism of si-LRRK2 inhibiting the progression of lung cancer is to regulate the TLR4/NF-κB signaling pathways and NLRP3 inflammasome.

13.
Brain Behav Immun ; 101: 1-22, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954073

RESUMO

Whereas human spinal cord injury (SCI) is more common in men, the prevalence is growing in women. However, little is known about the effect of biological sex on brain dysfunction and injury mechanisms. To model the highest per capita rate of injury (ages between 16 and 30 years old) in humans, in the present study, young adult or a young/middle-aged male and female C57BL/6 mice were subjected to moderate contusion SCI. When mice were injured at 10-12-week-old, transcriptomic analysis of inflammation-related genes and flow cytometry revealed a more aggressive neuroinflammatory profile in male than females following 3 d SCI, ostensibly driven by sex-specific changes myeloid cell function rather than cell number. Female mice were generally more active at baseline, as evidenced by greater distance traveled in the open field. After SCI, female mice had more favorable locomotor function than male animals. At 13 weeks post-injury, male mice showed poor performance in cognitive and depressive-like behavioral tests, while injured female mice showed fewer deficits in these tasks. However, when injured at 6 months old followed by 8 months post-injury, male mice had considerably less inflammatory activation compared with female animals despite having similar or worse outcomes in affective, cognitive, and motor tasks. Collectively, these findings indicate that sex differences in functional outcome after SCI are associated with the age at onset of injury, as well as disrupted neuroinflammation not only at the site of injury but also in remote brain regions. Thus, biological sex should be considered when designing new therapeutic agents.


Assuntos
Caracteres Sexuais , Traumatismos da Medula Espinal , Animais , Encéfalo , Feminino , Humanos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doenças Neuroinflamatórias , Recuperação de Função Fisiológica/fisiologia , Medula Espinal
14.
Brain Behav Immun ; 100: 10-24, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808293

RESUMO

Sepsis-associated encephalopathy (SAE) occurs in sepsis survivors and is associated with breakdown of the blood-brain barrier (BBB), brain inflammation, and neurological dysfunction. We have previously identified a group of extracellular microRNAs (ex-miRNAs), such as miR-146a-5p, that were upregulated in the plasma of septic mice and human, and capable of inducing potent pro-inflammatory cytokines and complements. Here, we established a clinically relevant mouse model of SAE and investigated the role of extracellular miRNAs and their sensor Toll-like receptor 7 (TLR7) in brain inflammation and neurological dysfunction. We observed BBB disruption and a profound neuroinflammatory responses in the brain for up to 14 days post-sepsis; these included increased pro-inflammatory cytokines production, microglial expansion, and peripheral leukocyte accumulation in the CNS. In a battery of neurobehavioral tests, septic mice displayed impairment of motor coordination and neurological function. Sepsis significantly increased plasma RNA and miRNA levels for up to 7 days, such as miR-146a-5p. Exogenously added miR-146a-5p induces innate immune responses in both cultured microglia/astrocytes and the intact brain via a TLR7-dependent manner. Moreover, mice genetically deficient of miR-146a showed reduced accumulation of monocytes and neutrophils in the brain compared to WT after sepsis. Finally, ablation of TLR7 in the TLR7-/- mice preserved BBB integrity, reduced microglial expansion and leukocyte accumulation, and attenuated GSK3ß signaling in the brain, but did not improve neurobehavioral recovery following sepsis. Taken together, these data establish an important role of extracellular miRNA and TLR7 sensing in sepsis-induced brain inflammation.


Assuntos
MicroRNAs , Sepse , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Imunidade Inata , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
15.
J Nat Prod ; 85(11): 2570-2582, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36326734

RESUMO

A sesquiterpenoid with an unprecedented 5/5/4 tricyclic skeleton (1), a nor-sesquiterpenoid with a rare 6/7 bicyclic skeleton (2), 10 new sesquiterpenoids (3-12), and six known analogues (13-18) were isolated from the whole plants of Seriphidium transiliense. The structures of compounds 1-12 were elucidated by spectroscopic data analysis. Compound 7 showed melanogenic promotion activity in murine melanoma (B16) cells more potent than the positive control used, 8-methoxypsoralen (8-MOP). Further mechanistic studies indicated that compound 7 promotes melanogenesis through activating the transcription of microphthalmia-associated transcription factor (MITF) and tyrosinase family genes in B16 cells. Moreover, compound 7 also inhibited the expression of IFN-γ-chemokine through the JAK/STAT signaling pathway in immortalized human keratinocyte (HaCaT) cells. These results suggest that the sesquiterpenoid 7 shows potential activity for treating vitiligo.


Assuntos
Asteraceae , Melaninas , Sesquiterpenos , Vitiligo , Animais , Humanos , Camundongos , Asteraceae/química , Linhagem Celular Tumoral , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Melaninas/biossíntese , Melanoma Experimental , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Vitiligo/tratamento farmacológico
16.
J Neurosci ; 40(14): 2960-2974, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094203

RESUMO

Chronic neuroinflammation with sustained microglial activation occurs following severe traumatic brain injury (TBI) and is believed to contribute to subsequent neurodegeneration and neurological deficits. Microglia, the primary innate immune cells in brain, are dependent on colony stimulating factor 1 receptor (CSF1R) signaling for their survival. In this preclinical study, we examined the effects of delayed depletion of chronically activated microglia on functional recovery and neurodegeneration up to 3 months postinjury. A CSF1R inhibitor, Plexxikon (PLX) 5622, was administered to adult male C57BL/6J mice at 1 month after controlled cortical impact to remove chronically activated microglia, and the inhibitor was withdrawn 1-week later to allow for microglial repopulation. Following TBI, the repopulated microglia displayed a ramified morphology similar to that of Sham uninjured mice, whereas microglia in vehicle-treated TBI mice showed the typical chronic posttraumatic hypertrophic morphology. PLX5622 treatment limited TBI-associated neuropathological changes at 3 months postinjury; these included a smaller cortical lesion, reduced hippocampal neuron cell death, and decreased NOX2- and NLRP3 inflammasome-associated neuroinflammation. Furthermore, delayed depletion of chronically activated microglia after TBI led to widespread changes in the cortical transcriptome and altered gene pathways involved in neuroinflammation, oxidative stress, and neuroplasticity. Using a variety of complementary neurobehavioral tests, PLX5622-treated TBI mice also had improved long-term motor and cognitive function recovery through 3 months postinjury. Together, these studies demonstrate that chronic phase removal of neurotoxic microglia after TBI using CSF1R inhibitors markedly reduce chronic neuroinflammation and associated neurodegeneration, as well as related motor and cognitive deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a debilitating neurological disorder that can seriously impact the patient's quality of life. Microglial-mediated neuroinflammation is induced after severe TBI and contributes to neurological deficits and on-going neurodegenerative processes. Here, we investigated the effect of breaking the neurotoxic neuroinflammatory loop at 1-month after controlled cortical impact in mice by pharmacological removal of chronically activated microglia using a colony stimulating factor 1 receptor (CSF1R) inhibitor, Plexxikon 5622. Overall, we show that short-term elimination of microglia during the chronic phase of TBI followed by repopulation results in long-term improvements in neurological function, suppression of neuroinflammatory and oxidative stress pathways, and a reduction in persistent neurodegenerative processes. These studies are clinically relevant and support new concepts that the therapeutic window for TBI may be far longer than traditionally believed if chronic and evolving microglial-mediated neuroinflammation can be inhibited or regulated in a precise manner.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Microglia/efeitos dos fármacos , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia
17.
Glia ; 69(3): 746-764, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33090575

RESUMO

Acidosis is among the least studied secondary injury mechanisms associated with neurotrauma. Acute decreases in brain pH correlate with poor long-term outcome in patients with traumatic brain injury (TBI), however, the temporal dynamics and underlying mechanisms are unclear. As key drivers of neuroinflammation, we hypothesized that microglia directly regulate acidosis after TBI, and thereby, worsen neurological outcomes. Using a controlled cortical impact model in adult male mice we demonstrate that intracellular pH in microglia and extracellular pH surrounding the lesion site are significantly reduced for weeks after injury. Microglia proliferation and production of reactive oxygen species (ROS) were also increased during the first week, mirroring the increase in extracellular ROS levels seen around the lesion site. Microglia depletion by a colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622, markedly decreased extracellular acidosis, ROS production, and inflammation in the brain after injury. Mechanistically, we identified that the voltage-gated proton channel Hv1 promotes oxidative burst activity and acid extrusion in microglia. Compared to wildtype controls, microglia lacking Hv1 showed reduced ability to generate ROS and extrude protons. Importantly, Hv1-deficient mice exhibited reduced pathological acidosis and inflammation after TBI, leading to long-term neuroprotection and functional recovery. Our data therefore establish the microglial Hv1 proton channel as an important link that integrates inflammation and acidosis within the injury microenvironment during head injury.


Assuntos
Acidose , Lesões Encefálicas Traumáticas , Animais , Lesões Encefálicas Traumáticas/complicações , Humanos , Inflamação , Canais Iônicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , Prótons , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória
18.
Opt Express ; 29(15): 24045-24055, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614657

RESUMO

Recently, higher-order topological insulators have been investigated as a novel topological phase of matter that obey an extended topological bulk-boundary correspondence principle. In this paper, we study the influence of BNN interaction on photonic higher-order corner states. We find both next-nearest-neighbor (NNN) hopping and perfect electric conductor (PEC) boundaries can solely result in two kinds of corner states which are quite different from the traditional "zero-energy" state. To demonstrate this intuitively, we design a novel all-dielectric structure that can effectively shield the influence of NNN couplings while remain the effect of PEC boundaries, so that we can distinguish the contributions from NNN hopping and PEC boundaries. In addition, we also investigate the total contribution on corner states when NNN couplings and PEC boundaries coexist, and some interesting features are revealed. These findings may expand our understanding of the high-order corner modes in a more general framework.

19.
Brain Behav Immun ; 91: 267-283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039662

RESUMO

Tissue acidosis is an important secondary injury process in the pathophysiology of traumatic spinal cord injury (SCI). To date, no studies have examined the role of proton extrusion as mechanism of pathological acidosis in SCI. In the present study, we hypothesized that the phagocyte-specific proton channel Hv1 mediates hydrogen proton extrusion after SCI, contributing to increased extracellular acidosis and poor long-term outcomes. Using a contusion model of SCI in adult female mice, we demonstrated that tissue pH levels are markedly lower during the first week after SCI. Acidosis was most evident at the injury site, but also extended into proximal regions of the cervical and lumbar cord. Tissue reactive oxygen species (ROS) levels and expression of Hv1 were significantly increased during the week of injury. Hv1 was exclusively expressed in microglia within the CNS, suggesting that microglia contribute to ROS production and proton extrusion during respiratory burst. Depletion of Hv1 significantly attenuated tissue acidosis, NADPH oxidase 2 (NOX2) expression, and ROS production at 3 d post-injury. Nanostring analysis revealed decreased gene expression of neuroinflammatory and cytokine signaling markers in Hv1 knockout (KO) mice. Furthermore, Hv1 deficiency reduced microglia proliferation, leukocyte infiltration, and phagocytic oxidative burst detected by flow cytometry. Importantly, Hv1 KO mice exhibited significantly improved locomotor function and reduced histopathology. Overall, these data suggest an important role for Hv1 in regulating tissue acidosis, NOX2-mediated ROS production, and functional outcome following SCI. Thus, the Hv1 proton channel represents a potential target that may lead to novel therapeutic strategies for SCI.


Assuntos
Acidose , Contusões , Traumatismos da Medula Espinal , Animais , Feminino , Canais Iônicos/genética , Camundongos , Prótons
20.
Brain Behav Immun ; 92: 165-183, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307173

RESUMO

Extracellular vesicles (EVs) have been implicated mechanistically in the pathobiology of neurodegenerative disorders, including central nervous system injury. However, the role of EVs in spinal cord injury (SCI) has received limited attention to date. Moreover, technical limitations related to EV isolation and characterization methods can lead to misleading or contradictory findings. Here, we examined changes in plasma EVs after mouse SCI at multiple timepoints (1d, 3d, 7d, 14d) using complementary measurement techniques. Plasma EVs isolated by ultracentrifugation (UC) were decreased at 1d post-injury, as shown by nanoparticle tracking analysis (NTA), and paralleled an overall reduction in total plasma extracellular nanoparticles. Western blot (WB) analysis of UC-derived plasma EVs revealed increased expression of the tetraspanin exosome marker, CD81, between 1d and 7d post-injury. To substantiate these findings, we performed interferometric and fluorescence imaging of single, tetraspanin EVs captured directly from plasma with ExoView®. Consistent with WB, we observed significantly increased plasma CD81+ EV count and cargo at 1d post-injury. The majority of these tetraspanin EVs were smaller than 50 nm based on interferometry and were insufficiently resolved by flow cytometry-based detection. At the injury site, there was enhanced expression of EV biogenesis proteins that were also detected in EVs directly isolated from spinal cord tissue by WB. Surface expression of tetraspanins CD9 and CD63 increased in multiple cell types at the injury site; however, astrocyte CD81 expression uniquely decreased, as demonstrated by flow cytometry. UC-isolated plasma EV microRNA cargo was also significantly altered at 1d post-injury with changes similar to that reported in EVs released by astrocytes after inflammatory stimulation. When injected into the lateral ventricle, plasma EVs from SCI mice increased both pro- and anti-inflammatory gene as well as reactive astrocyte gene expression in the brain cortex. These studies provide the first detailed characterization of plasma EV dynamics after SCI and suggest that plasma EVs may be involved in posttraumatic brain inflammation.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Nanopartículas , Traumatismos da Medula Espinal , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA