Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896643

RESUMO

This paper introduces an innovative model for heavy-haul train-track-bridge interaction, utilizing a coupling matrix representation based on the virtual work principle. This model establishes the relationship between the wheel-rail contact surface and the bridge-rail interface concerning internal forces and geometric constraints. In this coupled system's motion equation, the degrees of freedom (DOFs) of the wheelsets in a heavy-haul train lacking primary suspension are interdependent. Additionally, the vertical and nodding DOFs of the bogie frame are linked with the rail element. A practical application, a Yellow River Bridge with a heavy-haul railway line, is used to examine the accuracy of the proposed model with regard to discrepancy between the simulated and measured displacement ranging from 1% to 11%. A comprehensive parametric analysis is conducted, exploring the impacts of track irregularities of varying wavelengths, axle load lifting, and the degradation of bridge stiffness and damping on the dynamic responses of the coupled system. The results reveal that the bridge's dynamic responses are particularly sensitive to track irregularities within the wavelength range of 1 to 20 m, especially those within 1 to 10 m. The vertical displacement of the bridge demonstrates a nearly linear increase with heavier axle loads of the heavy-haul trains and the reduction in bridge stiffness. However, there is no significant rise in vertical acceleration under these conditions.

2.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904835

RESUMO

This study proposed a separation method to identify the temperature-induced response from the long-term monitoring data with noise and other action-induced effects. In the proposed method, the original measured data are transformed using the local outlier factor (LOF), and the threshold of the LOF is determined by minimizing the variance of the modified data. The Savitzky-Golay convolution smoothing is also utilized to filter the noise of the modified data. Furthermore, this study proposes an optimization algorithm, namely the AOHHO, which hybridizes the Aquila Optimizer (AO) and the Harris Hawks Optimization (HHO) to identify the optimal value of the threshold of the LOF. The AOHHO employs the exploration ability of the AO and the exploitation ability of the HHO. Four benchmark functions illustrate that the proposed AOHHO owns a stronger search ability than the other four metaheuristic algorithms. A numerical example and in situ measured data are utilized to evaluate the performances of the proposed separation method. The results show that the separation accuracy of the proposed method is better than the wavelet-based method and is based on machine learning methods in different time windows. The maximum separation errors of the two methods are about 2.2 times and 5.1 times that of the proposed method, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA