Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Phys Chem Chem Phys ; 26(19): 14205-14215, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689538

RESUMO

Graphitic carbon nitride (g-C3N4 or GCN) shows promise in photocatalytic water splitting, despite facing the challenge of rapid electron-hole recombination. In this study, we investigated the influence of boron/oxygen codoping on the photocatalytic performance of GCN systems for hydrogen generation. First-principles calculations and nonadiabatic molecular dynamics (NAMD) simulations were employed to reveal that the recombination time of photogenerated carriers could be increased by 16% to 64% in the codoped systems compared to the pristine GCN. The time-dependent density functional theory (TDDFT) scheme was utilized to select energy windows and initiate dynamics in cluster models of B/O co-doped heptazine with water molecules. Notably, we observed efficient direct photodissociation of hydrogen atoms from water molecules within 60 fs and proton hops within the hydrogen-bonded network within 80 fs in the co-doped system, diverging from the previously proposed mechanism for pristine heptazine in NAMD simulations. This discovery underscores the significant role of faster proton-coupled electron transfer (PCET) reactions and rapid radiationless relaxation in achieving high photocatalytic efficiency in water splitting. Our work enhances the understanding of the internal mechanism of highly efficient photocatalysts for water splitting and provides a new design strategy for doped GCN.

2.
Nano Lett ; 22(20): 8152-8160, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36219168

RESUMO

Ionic conductors such as polymer electrolytes and ionic liquids have high thermoelectric voltages several orders of magnitude higher than electronic thermoelectric materials, while their conductivity is much lower than the latter. This work reports a novel approach to achieve high-performance ionic conductors using calcium ion (Ca2+) coordinated bacterial cellulose (CaBC) through molecular channel engineering. Through the coordination of Ca2+ with cellulose molecular chain, the distance between the cellulose molecular chains is widened, so that ions can transport along the cellulose molecular chain. Therefore, we reported ionic thermoelectric (i-TE) material based on CaBC/NaCl with a relatively high ionic Seebeck coefficient of -27.2 mV K-1 and high ionic conductivity of 204.2 mS cm-1. This ionic hydrogel is promising in the design of high-thermopower i-TE materials for low-grade heat energy harvesting.


Assuntos
Celulose , Líquidos Iônicos , Temperatura Alta , Cloreto de Sódio , Cálcio , Íons , Eletrólitos , Polímeros , Hidrogéis
3.
Nanotechnology ; 31(25): 255708, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150741

RESUMO

The specific recognition between DNA and single-walled carbon nanotubes (SWCNTs) has enabled wide applications, especially in the chiral sorting of SWCNTs. However, the molecular recognition mechanism has not been fully understood. In our work, various DNA-SWCNT dispersions were prepared by the ultrasonic dispersion method, and characterized by UV absorption spectroscopy, fluorescence emission spectroscopy, zeta potential measurement, SDBS exchange kinetics and computer simulation. The effect of DNA sequence on the structure and properties of hybrid molecules was analyzed. Data analysis showed that DNA with specific recognition had better dispersion quality of the corresponding SWCNT, which means that higher content of monodispersed SWCNTs was obtained. The high-quality dispersion of the DNA-SWCNT pair was attributed to the stronger binding between DNA and SWCNT, resulting in a tighter conformation of DNA on the SWCNT surface and a larger zeta potential of DNA-SWCNT hybrids. Consequently, DNA-SWCNT dispersions of the recognition pair exhibited better stability against salt and stronger fluorescence emission intensity. However, the correlation between specific recognition and DNA coverage on SWCNT was not observed. This work gives more insight into the recognition mechanism between DNA and SWCNTs.


Assuntos
DNA/química , DNA/genética , Nanotubos de Carbono/química , Sequência de Bases , Simulação por Computador , Cinética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
4.
Analyst ; 143(2): 449-457, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29264597

RESUMO

A novel multifunctional sensing material, RSPT, incorporating rhodamine B hydrazide, a Schiff base, and a phenolic hydroxyl group into triazine, was identified and prepared. After the molecular structure was characterized by FTIR, 1H NMR, mass spectra and element analysis, it was notably found that there were multichannel turn-on fluorescent responses to Zn2+ and Bi3+, i.e., a strong fluorescence emission at 481 nm in DMF-water (99/1, v/v) for Zn2+ with a color change from colorless to light yellow-green, while an increased fluorescence emission at 580 nm in CH3CN-water (99/1, v/v) for Bi3+ with a color change from colorless to red. Their different action mechanisms for the RSPT-Zn2+ and RSPT-Bi3+ complexes were investigated and confirmed by means of fluorescent titration, binding constant, Job's plot curve, 1H NMR titration, and theoretical simulation. RSPT would be a promising turn-on fluorescent chemo-dosimeter for multichannel detection of Zn2+ and Bi3+ with a detection limit of 3.0 nM for Zn2+ and 8.6 nM for Bi3+.

5.
PLoS Comput Biol ; 9(10): e1003261, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098103

RESUMO

Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator which activates G protein-coupled sphingosine 1-phosphate receptors and thus evokes a variety of cell and tissue responses including lymphocyte trafficking, endothelial development, integrity, and maturation. We performed five all-atom 700 ns molecular dynamics simulations of the sphingosine 1-phosphate receptor 1 (S1P1) based on recently released crystal structure of that receptor with an antagonist. We found that the initial movements of amino acid residues occurred in the area of highly conserved W2696·48 in TM6 which is close to the ligand binding location. Those residues located in the central part of the receptor and adjacent to kinks of TM helices comprise of a transmission switch. Side chains movements of those residues were coupled to the movements of water molecules inside the receptor which helped in the gradual opening of intracellular part of the receptor. The most stable parts of the protein were helices TM1 and TM2, while the largest movement was observed for TM7, possibly due to the short intracellular part starting with a helix kink at P7·5°, which might be the first helix to move at the intracellular side. We show for the first time the detailed view of the concerted action of the transmission switch and Trp (W6·48) rotamer toggle switch leading to redirection of water molecules flow in the central part of the receptor. That event is a prerequisite for subsequent changes in intracellular part of the receptor involving water influx and opening of the receptor structure.


Assuntos
Simulação de Dinâmica Molecular , Receptores de Lisoesfingolipídeo/química , Análise Mutacional de DNA , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo , Água
6.
EJNMMI Phys ; 11(1): 23, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441830

RESUMO

PURPOSE: This study aimed to evaluate the clinical feasibility of early 30-minute dynamic 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) scanning protocol for patients with lung lesions in comparison to the standard 65-minute dynamic FDG-PET scanning as a reference. METHODS: Dynamic 18F-FDG PET images of 146 patients with 181 lung lesions (including 146 lesions confirmed by histology) were analyzed in this prospective study. Dynamic images were reconstructed into 28 frames with a specific temporal division protocol for the scan data acquired 65 min post-injection. Ki images and quantitative parameters Ki based on two different acquisition durations [the first 30 min (Ki-30 min) and 65 min (Ki-65 min)] were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. The two acquisition durations were compared for Ki image quality (including visual score analysis and number of lesions detected) and Ki value (including accuracy of Ki, the value of differential diagnosis of lung lesions and prediction of PD-L1 status) by Wilcoxon's rank sum test, Spearman's rank correlation analysis, receiver operating characteristic (ROC) curve, and the DeLong test. The significant testing level (alpha) was set to 0.05. RESULTS: The quality of the Ki-30 min images was not significantly different from the Ki-65 min images based on visual score analysis (P > 0.05). In terms of Ki value, among 181 lesions, Ki-65 min was statistically higher than Ki-30 min (0.027 ± 0.017 ml/g/min vs. 0.026 ± 0.018 ml/g/min, P < 0.05), while a very high correlation was obtained between Ki-65 min and Ki-30 min (r = 0.977, P < 0.05). In the differential diagnosis of lung lesions, ROC analysis was performed on 146 histologically confirmed lesions, the area under the curve (AUC) of Ki-65 min, Ki-30 min, and SUVmax was 0.816, 0.816, and 0.709, respectively. According to the Delong test, no significant differences in the diagnostic accuracies were found between Ki-65 min and Ki-30 min (P > 0.05), while the diagnostic accuracies of Ki-65 min and Ki-30 min were both significantly higher than that of SUVmax (P < 0.05). In 73 (NSCLC) lesions with definite PD-L1 expression results, the Ki-65 min, Ki-30 min, and SUVmax in PD-L1 positivity were significantly higher than that in PD-L1 negativity (P < 0.05). And no significant differences in predicting PD-L1 positivity were found among Ki-65 min, Ki-30 min, and SUVmax (AUC = 0.704, 0.695, and 0.737, respectively, P > 0.05), according to the results of ROC analysis and Delong test. CONCLUSIONS: This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions and prediction of PD-L1 expression. Protocols with a shortened early 30-minute acquisition time may be considered for patients who have difficulty with prolonged acquisitions to improve the efficiency of clinical acquisitions.

7.
Phys Chem Chem Phys ; 15(47): 20753-63, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24196867

RESUMO

The substituent group and hydrogen bonds play important roles in supramolecular self-assembly. To exploit the influential mechanism of hydrogen bonds during the dipole-dipole induced supramolecular self-assembly, some rigid azobenzene molecules with different electronegativity and hydrogen bonding capabilities were identified and designed. Different regular-shaped architectures were constructed via a simple solution process under mild conditions. Both experimental results and density functional theory calculations show that weak π-π stacking interactions lead to thick and short nanocylinders, strong dipole-dipole interactions and dipole induced π-π stacking lead to long and thin nanorods, appropriate hydrogen bonds consolidate the dipole-dipole interactions and dipole induced π-π stacking, forming thin nanosheets, while excessive hydrogen bonds in azobenzene would ruin the regular-shaped structures, giving irregular and stochastic aggregates. Namely there exists a certain hydrogen bond saturation effect in generating azobenzene nanostructures driven by dipole-dipole interactions. The results indicate that the morphologies of organic materials with azobenzene structures can be effectively controlled through rational molecular design by way of introducing appropriate dipole and hydrogen bonds.

8.
IEEE Trans Image Process ; 32: 6210-6222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943638

RESUMO

Facial expression editing has attracted increasing attention with the advance of deep neural networks in recent years. However, most existing methods suffer from compromised editing fidelity and limited usability as they either ignore pose variations (unrealistic editing) or require paired training data (not easy to collect) for pose controls. This paper presents POCE, an innovative pose-controllable expression editing network that can generate realistic facial expressions and head poses simultaneously with just unpaired training images. POCE achieves the more accessible and realistic pose-controllable expression editing by mapping face images into UV space, where facial expressions and head poses can be disentangled and edited separately. POCE has two novel designs. The first is self-supervised UV completion that allows to complete UV maps sampled under different head poses, which often suffer from self-occlusions and missing facial texture. The second is weakly-supervised UV editing that allows to generate new facial expressions with minimal modification of facial identity, where the synthesized expression could be controlled by either an expression label or directly transplanted from a reference UV map via feature transfer. Extensive experiments show that POCE can learn from unpaired face images effectively, and the learned model can generate realistic and high-fidelity facial expressions under various new poses.


Assuntos
Face , Redes Neurais de Computação , Face/diagnóstico por imagem , Expressão Facial , Humanos
9.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15098-15119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37624713

RESUMO

As information exists in various modalities in real world, effective interaction and fusion among multimodal information plays a key role for the creation and perception of multimodal data in computer vision and deep learning research. With superb power in modeling the interaction among multimodal information, multimodal image synthesis and editing has become a hot research topic in recent years. Instead of providing explicit guidance for network training, multimodal guidance offers intuitive and flexible means for image synthesis and editing. On the other hand, this field is also facing several challenges in alignment of multimodal features, synthesis of high-resolution images, faithful evaluation metrics, etc. In this survey, we comprehensively contextualize the advance of the recent multimodal image synthesis and editing and formulate taxonomies according to data modalities and model types. We start with an introduction to different guidance modalities in image synthesis and editing, and then describe multimodal image synthesis and editing approaches extensively according to their model types. After that, we describe benchmark datasets and evaluation metrics as well as corresponding experimental results. Finally, we provide insights about the current research challenges and possible directions for future research.

10.
Front Oncol ; 13: 1205379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023132

RESUMO

Objective: To investigate the diagnostic value of the maximum standard uptake value (SUVmax) of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) in solitary undetermined bone lesions. Methods: In Part I, retrospective study, 167 untreated patients with extra-skeletal malignant tumors by pathology were consecutively enrolled for staging with Tc-99m methyl-diphosphonate (99mTc-MDP) whole-body bone scan (WBS) and quantitative SPECT/CT, and a total of 396 bone lesions with abnormal radioactivity concentration in 167 patients were included from April 2019 to September 2020. The differences in SUVmax among the benign bone lesions, malignant bone lesions, and normal vertebrae were analyzed. The receiver operating characteristic (ROC) curve and cutoff value of SUVmax were obtained. Part II, prospective study, 49 solitary undetermined bone lesions in SPECT/CT in 49 untreated patients with extra-skeletal malignant tumors were enrolled from October 2020 to August 2022. The diagnostic efficacy of SUVmax in solitary undetermined bone lesions was assessed. The final diagnosis was based on follow-up imaging (CT, MRI, or 2-deoxy-2-[18F]fluoro-D-glucose-positron emission tomography/computed tomography) for at least 12 months. Results: In Part I, a total of 156 malignant and 240 benign bone lesions was determined; the SUVmax of malignant lesions (26.49 ± 12.63) was significantly higher than those of benign lesions (13.92 ± 7.16) and normal vertebrae (6.97 ± 1.52) (P = 0.00). The diagnostic efficiency of the SUVmax of quantitative SPECT/CT revealed a sensitivity of 75.00% and a specificity of 81.70% at a cutoff value of 18.07. In Part II, 17 malignant and 32 benign lesions were determined. Using SUVmax ≥18.07 as a diagnostic criterion of malignancy, it has a sensitivity of 82.35%, a specificity of 93.75%, and an accuracy of 89.80%. Conclusion: The SUVmax of quantitative SPECT/CT is valuable in evaluating solitary undetermined bone lesions. Using a cutoff SUVmax value of 18.07, quantitative SPECT/CT demonstrated high sensitivity, specificity, and accuracy in differentiating malignant from benign bone lesions.

11.
IEEE Trans Image Process ; 31: 2268-2278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35235508

RESUMO

Inferring the scene illumination from a single image is an essential yet challenging task in computer vision and computer graphics. Existing works estimate lighting by regressing representative illumination parameters or generating illumination maps directly. However, these methods often suffer from poor accuracy and generalization. This paper presents Geometric Mover's Light (GMLight), a lighting estimation framework that employs a regression network and a generative projector for effective illumination estimation. We parameterize illumination scenes in terms of the geometric light distribution, light intensity, ambient term, and auxiliary depth, which can be estimated by a regression network. Inspired by the earth mover's distance, we design a novel geometric mover's loss to guide the accurate regression of light distribution parameters. With the estimated light parameters, the generative projector synthesizes panoramic illumination maps with realistic appearance and high-frequency details. Extensive experiments show that GMLight achieves accurate illumination estimation and superior fidelity in relighting for 3D object insertion. The codes are available at https://github.com/fnzhan/Illumination-Estimation.

12.
ACS Omega ; 7(34): 30093-30103, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061653

RESUMO

As a most promising formaldehyde-free crosslinking agent for the antiwrinkle treatment of cotton fabrics, 1,2,3,4-butanetetracarboxylic acid (BTCA) has been explored for many years to replace the traditional N-methylol resin. However, the current methodology for preparing antiwrinkle cotton fabrics with BTCA mainly highlights the troublesome problem of higher curing temperature. In this research, a novel strategy with the aid of dimethyl sulfone (MSM) was developed to decrease the curing temperature of BTCA for fabricating antiwrinkle cotton fabrics, which is an eco-friendly additive with low price and wonderful biocompatibility. Temperature-dependent Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and computational simulations were employed to analyze the mechanism of MSM in the overall reaction between BTCA and cellulose. Based on the strong hydrogen-bond acceptor property of MSM, the noncovalent interactions in the crosslinking system could be easily interrupted, which facilitates the BTCA diffusion in amorphous regions of cellulose, anhydride formation, and the thermal vibration of cellulose chains during the processing. Physically and chemically speaking, both reactivities of grafting and crosslinking reactions of BTCA are significantly increased with the assistance of MSM, consequently reducing the curing temperature, which will hopefully help achieve the industrial-scale application of BTCA in antiwrinkle treatment.

13.
J Hazard Mater ; 389: 121831, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843414

RESUMO

An innovative strategy of adjusting the molecular polarity of organics is applied for multifunctional simultaneous ions detection. It involved the use of 4-bromo-2-hydroxyben Rhodamine B hydrazide (RHBr) as a colorimetric and fluorescent multifunctional chemosensor. Briefly, it was designed and prepared via integrating 4-bromo-2-hydroxybenzaldehyde with Rhodamine B hydrazide, and Rhodamine B as fluorophore group, CO, -CHN and -OH groups as reaction site, Br atom as electro n-withdrawing group. On the basis of theoretical calculation under Gaussian 09 software suit, RHBr could exclusively recognize Cu2+, Al3+ and Ca2+. This was also experimentally confirmed by the different turn-on colorimetric and fluorescent signals. For example the selective detection of Cu2+ ion in DMSO/H2O (1/1 = v/v, 10.0 mM HEPES pH 7.0) with the "naked-eye" when the color changed from colorless to pink, Al3+ with "turn-on" strong orange-red fluorescence and Ca2+ with strong green fluorescence in EtOH/H2O (v/v = 95/5). Under the optimized conditions, all the ions could be detected at a very low concentrations (1.7 × 10-7 M, 1.0 × 10-8 M, 2.8 × 10-7 M for Cu2+, Al3+, and Ca2+, respectively). In addition, the "in situ" formed RHBr-Al3+ was used to recognize l-phenylalanine (LPA) with a "turn-off" fluorescence ranging from 0.03-10.0 µM with the low detection concetration of 3.0 × 10-7 M. The sensing mechanisms of RHBr toward three metal ions and the ensemble RHBr-Al3+ toward the l-phenylalanine (LPA) were further investigated in detail. Practical application experiments further proved that RHBr had good cell permeability and could be utilized to detect Al3+ and Ca2+, and the complexes of RHBr-Al3+ could be applied to detect l-phenylalanine (LPA) in the living cells and zebrafishes, respectively.


Assuntos
Alumínio/análise , Cálcio/análise , Cobre/análise , Corantes Fluorescentes , Hidrazinas/química , Fenilalanina/análise , Rodaminas/química , Peixe-Zebra , Animais , Colorimetria/métodos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia de Fluorescência , Espectrometria de Fluorescência
14.
Anal Chim Acta ; 1095: 185-196, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31864621

RESUMO

A multiple turn-on fluorophore (FHCS), combining fluorescein, hydrazone, cyanuric chloride and salicylaldehyde chromone into a molecule, was identified and developed based on density functional theoretical calculation. It was expected that FHCS could express exclusive fluorescent signals and improved Stokes shifts when chelating Al3+ or Zn2+. After it was synthesized and characterized in detail, it was noted that FHCS could turn-on fluorescently discriminate trace Al3+ and Zn2+ under the optimized conditions, i.e., from no-fluorescence to strong blue fluorescence for Al3+ and to green fluorescence for Zn2+ with low detection limits of 5.37 × 10-8 M and 7.90 × 10-8 M respectively. Owing to its low toxicity, FHCS was successfully applied for quantitative determination of Al3+ and Zn2+ in natural aqueous samples and toxicity evaluation of Al3+ and Zn2+ in living cells and bio-tissues with excellent linear relationships. The action mechanisms for FHCS with Al3+ and Zn2+ were confirmed to form stable 5-member-co-6-member condensed rings between Al3+/Zn2+ and N/O atoms in FHCS by both theoretic and experimental methods, which resulted in turn-on fluorescence with different dipolar moments and improved Stokes shifts.


Assuntos
Alumínio/análise , Fluoresceínas/química , Corantes Fluorescentes/química , Zinco/análise , Animais , Teoria da Densidade Funcional , Desenho de Fármacos , Fluoresceínas/síntese química , Fluoresceínas/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Limite de Detecção , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Modelos Químicos , Imagem Óptica/métodos , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/toxicidade , Espectrometria de Fluorescência/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
15.
J Phys Chem B ; 113(24): 8332-8, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19476315

RESUMO

Molecular dynamics simulation has been performed on water/surfactant film rupture in order to investigate foam stability. A periodic boundary film model which was simulated in a lateral dimension of 8 x 8 nm(2) for 4 ns was established to stand for a part of a foam bubble. On the basis of critical film thickness, which is the lowest thickness before film rupture, a stability index was calculated to describe the capabilities of surfactants to stabilize water films. We investigated the influence of film size and simulation duration on the critical thickness and proved that our model is reasonable. The stability index versus surfactant concentration curve suggests that the capabilities of three surfactants-linear alkylbenzene sulfonate (LAS), sodium dodecyl sulfate (SDS), and heptaethylene glycol monododecyl ether (C(12)E(7))-in stabilization of water film decrease in the order of SDS > LAS > C(12)E(7). In the present study, the simulated results have been validated by the foam generation and decay experiment results, thus indicating that this method of predicting the stability of water/surfactant film is feasible.


Assuntos
Simulação por Computador , Membranas Artificiais , Modelos Químicos , Tensoativos/química , Água/química , Ácidos Alcanossulfônicos/química , Estrutura Molecular , Dodecilsulfato de Sódio/química
16.
J Phys Chem B ; 113(38): 12680-6, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19708670

RESUMO

Molecular dynamics simulations have been performed on the monolayers of dodecyltrimethylammonium bromide and gemini surfactants 12-S-12 with S=3, 6, and 12 at the n-heptane/water interfaces. The normal density profiles of the interface show that the distributions of surfactants at the liquid/liquid interface are significantly broader than those at air/water interfaces from comparisons with neutron reflection experiments and previous simulations. The spacers of 12-3-12 and 12-6-12 do not migrate much from the interface, while that of 12-12-12 tends to bend into the oil phase. The conformation of the surfactants shows that the spacers are more flexible than the tails. The characteristic angles of the surfactant well depict the geometry of the surfactants at the interface. The connected N+s of 12-3-12 and 12-6-12 have a prominent peak in the radial distribution functions, while those of 12-12-12 have nearly the same peak with those not connected. It is also found by three-dimensional spatial distribution functions that water molecules and bromide ions prefer to be shared between the positively charged methyl or methylene groups.

17.
J Phys Chem B ; 113(27): 9077-83, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19526995

RESUMO

Molecular dynamics simulations have been used to investigate the conformational transition behavior in amorphous polyethylene with different chain lengths across the glass transition temperature (T(g)). In the present study, we examined the barrier height of conformational transition rates in different states. It was found that two lines of the logarithmic rates versus inverse temperature in the melt state and in the glass state are evidently different. The two lines have an intersection, which indicates T(g) well. The barrier height in the glass state was unexpectedly observed lower than that in the melt state. For gaining better understanding of the transition barrier reduction, we analyzed motion heterogeneity of the systems and found the torsional transition rate distribution becoming gradually heterogeneous when the temperature went down to the glass state. The result indicates that the motion heterogeneity was caused by the torsion transition being "frozen". The frozen torsions made the system into a nonequilibrium state and possess a novel transition behavior, which accounted for most of the transitions that started at a location close to top of barrier, and also the enhancement of a small magnitude of transition jumps.

18.
J Phys Chem B ; 112(34): 10509-13, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18671363

RESUMO

A proline surfactant including two chiral carbons, sodium N-dodecanoyl-(4R)-hydroxy-L-prolinate (SDHP), has been synthesized, and its micellization behavior in aqueous solution has been investigated by 1H NMR spectroscopy. Two conformational isomers of SDHP, namely, Z and E, are discriminated in the NMR time scale, and critical micelle concentration is derived for each isomer separately. The transformation from E to Z is observed upon micellization, and the amount of Z isomer is approximately three times that of E isomer in the equilibrated system. Moreover, the variation in chemical shifts with the surfactant concentration reveals the shielding effect of the carboxyl group on the syn-side protons of the pyrrolidine ring, which implies that the pyrrolidine rings arrange in a side-to-side manner and lie parallel to the plane of the carboxyl bonds in the neighboring molecules. The difference in the directions of the carbonyl group between Z and E isomers essentially determines their different micellization abilities and molecular arrangements in the micellization process.


Assuntos
Micelas , Prolina/química , Tensoativos/química , Algoritmos , Hidroxiprolina/química , Ácidos Láuricos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Estereoisomerismo , Tensoativos/síntese química
19.
ACS Appl Mater Interfaces ; 10(29): 24349-24360, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29979028

RESUMO

A series of surfactant-like peptides have been designed for inducing DNA condensation, which are all comprised of the same set of amino acids in different sequences. Results from experiments and molecular dynamics simulations show that the peptide's self-assembly and DNA-interaction behaviors can be well manipulated through sequence variation. With optimized pairing modes between the ß-sheets, the peptide of I3V3A3G3K3 can induce efficient DNA condensation into virus-mimicking structures. The condensation involves two steps; the peptide molecules first bind onto the DNA chain through electrostatic interactions and then self-associate into ß-sheets under hydrophobic interactions and hydrogen bonding. In such condensates, the peptide ß-sheets act as scaffolds to assist the ordered arrangement of DNA, mimicking the very nature of the virus capsid in helping DNA packaging. Such a hierarchy affords an extremely stable structure to attain the highly condensed state and protect DNA against enzymatic degradation. Moreover, the condensate size can be well tuned by the DNA length. The condensates with smaller sizes and narrow size distribution can deliver DNA efficiently into cells. The study helps not only for probing into the DNA packaging mechanism in virus but also delineating the role of peptide self-assembly in DNA condensation, which may lead to development of peptide-based gene vectors for therapeutic applications.


Assuntos
Nanoestruturas , DNA , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Estrutura Secundária de Proteína
20.
ACS Nano ; 12(12): 11860-11870, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30407791

RESUMO

In this study, nascent silk nanoribbons (SNRs) with an average thickness of 0.4 nm were extracted from natural silkworm silk by partially dissolving degummed silk (DS) in sodium hydroxide (NaOH)/urea solution at -12 °C. In this gentle treatment, the solvent could not destroy the nanofibrillar structure completely, but the chosen conditions would influence the dimensions of resulting SNRs. Molecular dynamics simulations of silk models indicated that the potential of mean force required to break hydrogen bonds between silk fibroin chains was 40% larger than that of van der Waals interactions between ß-sheet layers, allowing the exfoliating treatment. It was found that the resulting SNRs contained a single ß-sheet layer and amorphous silk fibroin molecules, which could be considered as the basic building block of DS consisting of hierarchical structures. The demonstrated technique for extracting ultrathin SNRs having the height of a single ß-sheet layer may provide a useful pathway for creating stronger and tougher silk-based materials and/or adding functionality and durability in materials for various applications. The hierarchical structure model based on SNRs may afford more insight into the structure and property relationship of fabricating silk-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA