Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(7): 078101, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867811

RESUMO

Topological defects usually emerge and vary during the phase transition of ordered systems. Their roles in thermodynamic order evolution keep being the frontier of modern condensed matter physics. Here, we study the generations of topological defects and their guidance on the order evolution during the phase transition of liquid crystals (LCs). With a given preset photopatterned alignment, two different types of topological defects are achieved depending on the thermodynamic process. Because of the memory effect of LC director field across the Nematic-Smectic (N-S) phase transition, a stable array of toric focal conic domains (TFCDs) and a frustrated one are generated in S phase, respectively. The frustrated one transfers to a metastable TFCD array with a smaller lattice constant, and further changes to a crossed-walls type N state due to the inheritance of orientational order. A free energy on temperature diagram and corresponding textures vividly describe the phase transition process and the roles of topological defects in the order evolution across the N-S phase transition. This Letter reveals the behaviors and mechanisms of topological defects on order evolution during phase transitions. It paves a way for investigating topological defect guided order evolution which is ubiquitous in soft matter and other ordered systems.

2.
Sci Adv ; 7(32)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34362740

RESUMO

Rotation-translation conversion is a popular way to achieve power transmission in machinery, but it is rarely selected by nature. One unique case is that of bacteria swimming, which is based on the collective reorganization and rotation of flagella. Here, we mimic such motion using the light-driven evolution of a self-organized periodic arch pattern. The range and direction of translation are altered by separately varying the alignment period and the stimulating photon energy. Programmable self-propelling actuators are realized via a specific molecular assembly within a photoresponsive cholesteric medium. Through rationally presetting alignments, parallel transports of microspheres in customized trajectories are demonstrated, including convergence, divergence, gathering, and orbital revolution. This work extends the understanding of the rotation-translation conversion performed in an exquisitely self-organized system and may inspire future designs for functional materials and intelligent robotics.

3.
ACS Nano ; 13(12): 13709-13715, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31746201

RESUMO

Visual imaging that can extract three-dimensional (3D) space or polarization information on the target is essential in broad sciences and technologies. The simultaneous acquisition of them usually demands expensive equipment and sophisticated operations. Therefore, it is of great significance to exploit convenient approaches for four-dimensional (3D and polarization) visual imaging. Here, we present an efficient solution based on self-assembled asymmetric liquid crystal microlenses, with freely manipulated phase profiles and symmetry-breaking properties. Accordingly, characteristics of multifocal functionality and polarization selectivity are exhibited, along with the underlying mechanisms. Moreover, with a specific sample featured by radially increased unit sizes and azimuthally varied domain orientations, the discriminability of four-dimensional information is extracted in a single snapshot, via referring to the coordinates of the clearest images. Demultiplexing of depth/polarization information is also demonstrated. This work will unlock a variety of revolutionary apparatuses and lighten extensive applications.

4.
Nat Commun ; 10(1): 2518, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175286

RESUMO

Active planar optical devices that can dynamically manipulate light are highly sought after in modern optics and nanophotonics. The geometric phase derived from the photonic spin-orbit interaction provides an integrated strategy. Corresponding elements usually suffer from static functions. Here, we introduce an inhomogeneously self-organized anisotropic medium featured by photo-invertible chiral superstructure to realize geometric phase elements with continuously tunable working spectrum and light-flipped phase profile. Via preprograming the alignment of a cholesteric liquid crystal mixed with a photo-responsive chiral dopant, we demonstrate light-activated deflector, lens, Airy beam and optical vortex generators. Their polychromatic working bands are reversibly tuned in an ultra-broadband over 1000 nm covering green to telecomm region. The chirality inversion triggers facile switching of functionalities, such as beam steering, focusing/defocusing and spin-to-orbital angular momentum conversion. This work offers a platform for advanced adaptive and multifunctional flat optics with merits of high compactness, low loss and broad bandwidth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA