Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(8): e29040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635380

RESUMO

Protein subunit vaccines have been used as prophylactic vaccines for a long time. The well-established properties of these vaccines make them the first choice for the coronavirus disease 2019 (COVID-19) outbreak. However, it is not easy to develop a protein vaccine that induces cytotoxic T lymphocyte responses and requires a longer time for manufacturing, which limits the usage of this vaccine type. Here, we report the combination of a recombinant spike (S)-trimer protein with a DNA vaccine-encoded S protein as a novel COVID-19 vaccine. The recombinant S protein was formulated with different adjuvants and mixed with the DNA plasmid before injection. We found that the recombinant S protein formulated with the adjuvant aluminum hydroxide and mixed with the DNA plasmid could enhance antigen-specific antibody titers, neutralizing antibody titers. We further evaluated the IgG2a/IgG1 isotype and cytokine profiles of the specific boosted T-cell response, which indicated that the combined vaccine induced a T-helper 1 cell-biased immune response. Immunized hamsters were challenged with severe acute respiratory syndrome coronavirus 2, and the body weight of the hamsters that received the recombinant S protein with aluminum hydroxide and/or the DNA plasmid was not reduced. Alternatively, those that received control or only the DNA plasmid immunization were reduced. Interestingly, after the third day of the viral load in the lungs, the viral challenge could not be detected in hamsters immunized with the recombinant S protein in aluminum hydroxide mixed with DNA (tissue culture infectious dose < 10). The viral load in the lungs was 109 , 106 , and 107 for the phosphate-buffered saline, protein in aluminum hydroxide, and DNA-only immunizations, respectively. These results indicated that antiviral mechanisms neutralizing antibodies play important roles. Furthermore, we found that the combination of protein and DNA vaccination could induce relatively strong CD8+ T-cell responses. In summary, the protein subunit vaccine combined with a DNA vaccine could induce strong CD8+ T-cell responses to increase antiviral immunity for disease control.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Cricetinae , SARS-CoV-2/genética , Hidróxido de Alumínio , Vacinas contra COVID-19 , Subunidades Proteicas , COVID-19/prevenção & controle , DNA , Imunidade Celular , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antivirais
2.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563292

RESUMO

During the sustained COVID-19 pandemic, global mass vaccination to achieve herd immunity can prevent further viral spread and mutation. A protein subunit vaccine that is safe, effective, stable, has few storage restrictions, and involves a liable manufacturing process would be advantageous to distribute around the world. Here, we designed and produced a recombinant spike (S)-Trimer that is maintained in a prefusion state and exhibits a high ACE2 binding affinity. Rodents received different doses of S-Trimer (0.5, 5, or 20 µg) antigen formulated with aluminum hydroxide (Alum) or an emulsion-type adjuvant (SWE), or no adjuvant. After two vaccinations, the antibody response, T-cell responses, and number of follicular helper T-cells (Tfh) or germinal center (GC) B cells were assessed in mice; the protective efficacy was evaluated on a Syrian hamster infection model. The mouse studies demonstrated that adjuvating the S-Trimer with SWE induced a potent humoral immune response and Th1-biased cellular immune responses (in low dose) that were superior to those induced by Alum. In the Syrian hamster studies, when S-Trimer was adjuvanted with SWE, higher levels of neutralizing antibodies were induced against live SARS-CoV-2 from the original lineage and against the emergence of variants (Beta or Delta) with a slightly decreased potency. In addition, the SWE adjuvant demonstrated a dose-sparing effect; thus, a lower dose of S-Trimer as an antigen (0.5 µg) can induce comparable antisera and provide complete protection from viral infection. These data support the utility of SWE as an adjuvant to enhance the immunogenicity of the S-Trimer vaccine, which is feasible for further clinical testing.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Células Th1 , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/farmacologia , Cricetinae , Emulsões , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia
3.
Biotechnol Bioeng ; 116(3): 598-609, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30080931

RESUMO

Refocusing of B-cell responses can be achieved by preserving the overall fold of the antigen structure but selectively mutating the undesired antigenic sites with additional N-linked glycosylation motifs for glycan masking the vaccine antigen. We previously reported that glycan-masking recombinant H5 hemagglutinin (rH5HA) antigens on residues 83, 127, and 138 (g127 + g138 or g83 + g127 + 138 rH5HA) elicited broader neutralizing antibodies and protection against heterologous clades/subclades of high pathogenic avian influenza H5N1 viruses. In this study, we engineered the stably expressing Chinese hamster ovary (CHO) cell clones for producing the glycan-masking g127 + g138 and g83 + g127 + g138 rH5HA antigens. All of these glycan-masking rH5HA antigens produced in stable CHO cell clones were found to be mostly oligomeric structures. Only the immunization with the glycan-masking g127 + g138 but not g83 + g127 + g138 rH5HA antigens elicited more potent neutralizing antibody titers against four out of five heterologous clades/subclades of H5N1 viral strains. The increased neutralizing antibody titers against these heterologous viral strains were correlated with the increased amounts of stem-binding antibodies, only the glycan-masking g127 + g138 rH5HA antigens can translate into more protection against live viral challenges. The stable CHO cell line-produced glycan-masking g127 + g138 rH5HA can be used for H5N1 subunit vaccine development.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Engenharia de Proteínas/métodos , Proteínas Recombinantes , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Células CHO , Cricetinae , Cricetulus , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Polissacarídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
4.
J Virol ; 90(13): 6085-6096, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099319

RESUMO

UNLABELLED: Influenza virus hemagglutinin (HA) N-glycans play important regulatory roles in the control of virus virulence, antigenicity, receptor-binding specificity, and viral escape from the immune response. Considered essential for controlling innate and adaptive immune responses against influenza virus infections, dendritic cells (DCs) trigger proinflammatory and adaptive immune responses in hosts. In this study, we engineered Chinese hamster ovary (CHO) cell lines expressing recombinant HA from pandemic H1, H5, and H7 influenza viruses. rH1HA, rH5HA, and rH7HA were obtained as wild-type proteins or in the presence of kifunensine (KIF) or further with endo-ß-N-acetylglucosaminidase-treated KIF (KIF+E) to generate single-N-acetylglucosamine (GlcNAc) N-glycans consisting of (i) terminally sialylated complex-type N-glycans, (ii) high-mannose-type N-glycans, and (iii) single-GlcNAc-type N-glycans. Our results show that high-mannose-type and single-GlcNAc-type N-glycans, but not complex-type N-glycans, are capable of inducing more active hIL12 p40, hIL12 p70, and hIL-10 production in human DCs. Significantly higher HLA-DR, CD40, CD83, and CD86 expression levels, as well reduced endocytotic capacity in human DCs, were noted in the high-mannose-type rH1HA and single-GlcNAc-type rH1HA groups than in the complex-type N-glycan rH1HA group. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). The high-mannose-type or single-GlcNAc-type N-glycans of both avian and human HA types are more stimulatory than the complex-type N-glycans. HA-stimulated DC activation was accomplished partially through a mannose receptor(s). These results provide more understanding of the contribution of glycosylation of viral proteins to the immune responses and may have implications for vaccine development. IMPORTANCE: Influenza viruses trigger seasonal epidemics or pandemics with mild-to-severe consequences for human and poultry populations. DCs are the most potent professional antigen-presenting cells, which play a crucial role in the link between innate and adaptive immunity. In this study, we obtained stable-expression CHO cells to produce rH1HA, rH5HA, and rH7HA proteins containing distinct N-glycan patterns. These rHA proteins, each with a distinct N-glycan pattern, were used to investigate interactions with mouse and human DCs. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). High-mannose-type and single-GlcNAc-type N-glycans were more effective than complex-type N-glycans in triggering mouse and human DC activation and maturation. We believe these results provide some useful information for influenza vaccine development regarding how influenza virus HA proteins with different types of N-glycans activate DCs.


Assuntos
Células Dendríticas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Alcaloides/farmacologia , Animais , Antígenos CD/genética , Antígeno B7-2/genética , Aves , Antígenos CD40/genética , Células CHO , Cricetinae , Cricetulus , Células Dendríticas/fisiologia , Antígenos HLA-DR/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Imunoglobulinas/genética , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/química , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Glicoproteínas de Membrana/genética , Pandemias , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Antígeno CD83
5.
J Virol ; 90(19): 8496-508, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440889

RESUMO

UNLABELLED: Influenza virus hemagglutinin (HA) protein consists of two components, i.e., a globular head region and a stem region that are folded within six disulfide bonds, plus several N-linked glycans that produce a homotrimeric complex structure. While N-linked glycosylation sites on the globular head are variable among different strains and different subtypes, N-linked glycosylation sites in the stem region are mostly well conserved among various influenza virus strains. Targeting highly conserved HA stem regions has been proposed as a useful strategy for designing universal influenza vaccines. Since the HA stem region is constituted by an HA1 N-terminal part and a full HA2 part, we expressed a series of recombinant HA mutant proteins with deleted N-linked glycosylation sites in the HA1 stem and HA2 stem regions of H5N1 and pH1N1 viruses. Unmasking N-glycans in the HA2 stem region (H5 N484A and H1 N503A) was found to elicit more potent neutralizing antibody titers against homologous, heterologous, and heterosubtypic viruses. Unmasking the HA2 stem N-glycans of H5HA but not H1HA resulted in more CR6261-like and FI6v3-like antibodies and also correlated with the increase of cell fusion inhibition activity in antisera. Only H5 N484A HA2 stem mutant protein immunization increased the numbers of antibody-secreting cells, germinal center B cells, and memory B cells targeting the stem helix A epitopes in splenocytes. Unmasking the HA2 stem N-glycans of H5HA mutant proteins showed a significantly improvement in the protection against homologous virus challenges but did so to a less degree for the protection against heterosubtypic pH1N1 virus challenges. These results may provide useful information for designing more effective influenza vaccines. IMPORTANCE: N-linked glycosylation sites in the stem regions of influenza virus hemagglutinin (HA) proteins are mostly well conserved among various influenza virus strains. Targeting highly conserved HA stem regions has been proposed as a useful strategy for designing universal influenza vaccines. Our studies indicate that unmasking the HA2 stem N-glycans of recombinant HA proteins from H5N1 and pH1N1 viruses induced more potent neutralizing antibody titers against homologous and heterosubtypic viruses. However, only immunization with the H5N1 HA2 stem mutant protein can refocus B antibody responses to the helix A epitope for inducing more CR6261-like/FI6v3-like and fusion inhibition antibodies in antisera, resulting in a significant improvement for the protection against lethal H5N1 virus challenges. These results may provide useful information for designing more effective influenza vaccines.


Assuntos
Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Desenho de Fármacos , Epitopos/química , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/genética , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes/química , Análise de Sobrevida , Resultado do Tratamento , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
6.
J Virol ; 89(14): 7224-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948745

RESUMO

UNLABELLED: Neuraminidase (NA), an influenza virus envelope glycoprotein, removes sialic acid from receptors for virus release from infected cells. For this study, we used a baculovirus-insect cell expression system to construct and purify recombinant NA (rNA) proteins of H5N1 (A/Vietnam/1203/2004) and pandemic H1N1 (pH1N1) (A/Texas/05/2009) influenza viruses. BALB/c mice immunized with these proteins had high titers of NA-specific IgG and NA-inhibiting (NI) antibodies against H5N1, pH1N1, H3N2, and H7N9 viruses. H5N1 rNA immunization resulted in higher quantities of NA-specific antibody-secreting B cells against H5N1 and heterologous pH1N1 viruses in the spleen. H5N1 rNA and pH1N1 rNA immunizations both provided complete protection against homologous virus challenges, with H5N1 rNA immunization providing better protection against pH1N1 virus challenges. Cross-reactive NI antibodies were further dissected via pH1N1 rNA protein immunizations with I149V (NA with a change of Ile to Val at position 149), N344Y, and I365T/S366N NA mutations. The I365T/S366N mutation of pH1N1 rNA enhanced cross-reactive NI antibodies against H5N1, H3N2, and H7N9 viruses. It is our hope that these findings provide useful information for the development of an NA-based universal influenza vaccine. IMPORTANCE: Neuraminidase (NA) is an influenza virus enzymatic protein that cleaves sialic acid linkages on infected cell surfaces, thus facilitating viral release and contributing to viral transmission and mucus infection. In currently available inactivated or live, attenuated influenza vaccines based on the antigenic content of hemagglutinin proteins, vaccine efficacy can be contributed partly through NA-elicited immune responses. We investigated the NA immunity of different recombinant NA (rNA) proteins associated with pH1N1 and H5N1 viruses. Our results indicate that H5N1 rNA immunization induced more potent cross-protective immunity than pH1N1 rNA immunization, and three mutated residues, I149V, I365T, and S366N, near the NA enzyme active site(s) are linked to enhanced cross-reactive NA-inhibiting antibodies against heterologous and heterosubtypic influenza A viruses. These findings provide useful information for the development of an NA-based universal influenza vaccine.


Assuntos
Anticorpos Antivirais/sangue , Reações Cruzadas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Animais , Baculoviridae , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/enzimologia , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Células Sf9 , Spodoptera , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
7.
Arch Virol ; 161(1): 19-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26446888

RESUMO

Influenza A viruses (IAV) are widespread in birds and domestic poultry, occasionally causing severe epidemics in humans and posing health threats. Hence, the need to develop a strategy for prophylaxis or therapy, such as a broadly neutralizing antibody against IAV, is urgent. In this study, single-chain variable fragment (scFv) phage display technology was used to select scFv fragments recognizing influenza envelope proteins. The Tomlinson I and J scFv phage display libraries were screened against the recombinant HA2 protein (rHA2) for three rounds. Only the third-round elution sample of the Tomlinson J library showed high binding affinity to rHA2, from which three clones (3JA18, 3JA62, and 3JA78) were chosen for preparative-scale production as soluble antibody by E. coli. The clone 3JA18 was selected for further tests due to its broad affinity for influenza H1N1, H3N2 and H5N1. Simulations of the scFv 3JA18-HA trimer complex revealed that the complementarity-determining region of the variable heavy chain (VH-CDR2) bound the stem region of HA. Neutralization assays using a peptide derived from VH-CDR2 also supported the simulation model. Both the selected antibody and its derived peptide were shown to suppress infection with H5N1 and H1N1 viruses, but not H3N2 viruses. The results also suggested that the scFvs selected from rHA2 could have neutralizing activity by interfering with the function of the HA stem region during virus entry into target cells.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/virologia , Anticorpos de Cadeia Única/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/imunologia , Anticorpos de Cadeia Única/genética
8.
J Virol ; 88(15): 8386-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829339

RESUMO

UNLABELLED: Interaction between E and prM proteins in flavivirus-infected cells is a major factor for virus-like particle (VLP) production. The prM helical (prM-H) domain is topologically close to and may interact with domain II of the E protein (EDII). In this study, we investigated prM-H domain amino acid residues facing Japanese encephalitis virus EDII using site-directed mutagenesis to determine their roles in prM-E interaction and VLP production. Our results indicate that negatively charged prM-E125 residue at the prM-H domain affected VLP production via one or more interactions with positively charged E-K93 and E-H246 residues at EDII. Exchanges of oppositely charged residue side chains at prM-E125/E-K93 and prM-E125/E-H246 are recoverable for VLP production. The prM-E125 and E-H246 residues are conserved and that the positive charge of the E-K93 residue is preserved in different flavivirus groups. These findings suggest that the electrostatic attractions of prM-E125, E-K93, and E-H246 residues are important to flavivirus VLP production and that inhibiting these interactions is a potential strategy for blocking flavivirus infections. IMPORTANCE: Molecular interaction between E and prM proteins of Japanese encephalitis virus is a major driving force for virus-like particle (VLP) production. The current high-resolution structures available for prM-E complexes do not include the membrane proximal stem region of prM. The prM stem region contains an N-terminal loop and a helix domain (prM-H). Since the prM-H domain is topologically close to domain II of the E protein (EDII), this study was to determine molecular interactions between the prM-H domain and EDII. We found that the molecular interactions between prM-E125 residue and positively charged E-K93 and E-H246 residues at EDII are critical for VLP production. More importantly, the prM-E125 and E-H246 residues are conserved and the positive charge of the E-K93 residue is preserved in different flavivirus groups. Our findings help refine the structure and molecular interactions on the flavivirus surface and reveal a potential strategy for blocking flavivirus infections by inhibiting these electrostatic interactions.


Assuntos
Aminoácidos/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Glicoproteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Animais , Linhagem Celular , Análise Mutacional de DNA , Vírus da Encefalite Japonesa (Espécie)/química , Humanos , Glicoproteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Envelope Viral/genética , Virossomos/química
9.
J Formos Med Assoc ; 112(6): 312-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23742902

RESUMO

BACKGROUND/PURPOSE: Human infections by a new avian influenza A (H7N9) virus have been reported. As of April 23, 2013, there were 108 confirmed cases including 22 deaths in China. METHODS: Influenza protein sequences were downloaded from the Influenza Virus Resource and GISAID EpiFlu databases. Pairwise nucleotide identities were computed for assessing the evolutionary distance of H7N9 to other known avian and human viruses, and multiple sequence alignments with their position-specific entropy values were used in discussing how mutations on species-associated signature positions were introduced in the new H7N9 which may steer its way to human infection. RESULTS: This report analyzed the genomic characteristics of this new H7N9 virus. Nucleotide sequence analysis clearly reveals its origin from avian viruses. In this article, we particularly focus on its internal genes that are found to derive from H9N2-another subtype of avian influenza A virus which has been circulating in birds for years. Amino acid sequences at species-specific genomic positions were examined. Although the new virus contains mostly avian-like residues at these signature positions, it does contain several human-like signatures. For instance, at the position 627 of PB2, the new virus has human-characteristic K instead of avian-characteristic E; in addition, PB2-627K, PA-100A, PA-356R, and PA-409N are also human-like signatures in the new H7N9 virus. CONCLUSION: The new H7N9 is an avian influenza A virus; however, it does harbor several human virus-like signatures, which raises great concern that it may have a higher probability to cross species barriers and infect humans.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/transmissão , Influenza Humana/transmissão , Sequência de Aminoácidos , Aminoácidos/análise , Animais , Aves , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia
10.
Antiviral Res ; 220: 105752, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949318

RESUMO

The outbreak of SARS-CoV-2 infections had led to the COVID-19 pandemic which has a significant impact on global public health and the economy. The spike (S) protein of SARS-CoV-2 contains the receptor binding domain (RBD) which binds to human angiotensin-converting enzyme 2 receptor. Numerous RBD-based vaccines have been developed and recently focused on the induction of neutralizing antibodies against the immune evasive Omicron BQ.1.1 and XBB.1.5 subvariants. In this preclinical study, we reported the use of a direct fusion of the type IIb Escherichia coli heat-labile enterotoxin A subunit with SARS CoV-2 RBD protein (RBD-LTA) as an intranasal vaccine candidate. The results showed that intranasal immunization with the RBD-LTA fusion protein in BALB/c mice elicited potent neutralizing antibodies against the Wuhan-Hu-1 and several SARS-CoV-2 variants as well as the production of IgA antibodies in bronchoalveolar lavage fluids (BALFs). Furthermore, the heterologous RBD representing the same strains used in the bivalent mRNA vaccine were used as a second-dose RBD-LTA/RBD protein booster after bivalent mRNA vaccination. The results showed that the neutralizing antibody titers elicited by the intranasal bivalent RBD-LTA/RBD protein booster were similar to the intramuscular bivalent mRNA booster, but the RBD-specific IgA titers in sera and BALFs significantly increased. Overall, this preclinical study suggests that the RBD-LTA fusion protein could be a promising candidate as a mucosal booster COVID-19 vaccine.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Camundongos , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Escherichia coli , Vacinas contra COVID-19 , Temperatura Alta , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2/genética , Enterotoxinas/genética , Vacinação , Imunização , Anticorpos Neutralizantes , RNA Mensageiro , Anticorpos Antivirais
11.
Sci Rep ; 13(1): 13468, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596329

RESUMO

The COVID-19 pandemic has had a widespread impact on a global scale, and the evolution of considerable dominants has already taken place. Some variants contained certain key mutations located on the receptor binding domain (RBD) of spike protein, such as E484K and N501Y. It is increasingly worrying that these variants could impair the efficacy of current vaccines or therapies. Therefore, analyzing and predicting the high-risk mutations of SARS-CoV-2 spike glycoprotein is crucial to design future vaccines against the different variants. In this work, we proposed an in silico approach, immune-escaping score (IES), to predict high-risk immune-escaping hot spots on the receptor-binding domain (RBD), implemented through integrated delta binding free energy measured by computational mutagenesis of spike-antibody complexes and mutation frequency calculated from viral genome sequencing data. We identified 23 potentially immune-escaping mutations on the RBD by using IES, nine of which occurred in omicron variants (R346K, K417N, N440K, L452Q, L452R, S477N, T478K, F490S, and N501Y), despite our dataset being curated before the omicron first appeared. The highest immune-escaping score (IES = 1) was found for E484K, which agrees with recent studies stating that the mutation significantly reduced the efficacy of neutralization antibodies. Furthermore, our predicted delta binding free energy and IES show a high correlation with high-throughput deep mutational scanning data (Pearson's r = 0.70) and experimentally measured neutralization titers data (mean Pearson's r = -0.80). In summary, our work presents a new method to identify the potentially immune-escaping mutations on the RBD and provides valuable insights into future COVID-19 vaccine design.


Assuntos
COVID-19 , Dermatite , Humanos , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2/genética
12.
Virus Res ; 329: 199101, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958398

RESUMO

Coxsackievirus A10 (CVA10) is one of enteroviral pathogens that cause the hand, foot, and mouth disease (HFMD). Since CVA10 was reported to be not easily propagated in the Vero cell culture, a feasible manufacture process for producing formalin-inactivated CVA10 vaccine is urgently needed. Several cell lines that commonly used for viral vaccine production was tested for CVA10 (M2014 strain) culture in this study, and our result showed that CVA10 could be easily propagated in the HEK293A cells. A serum-free HEK293A cell culture system was developed for CVA10 production and the yields have reached over 108 TCID50/mL. The biochemical and immunogenic properties of CVA10 particles obtained from this serum-free HEK293A culture were identical to our previous study. Two major particles of CVA10 were separated by ultracentrifugation, and only the infectious mature particles were capable of inducing CVA10 neutralizing antibody responses in the mouse immunogenicity studies. Additionally, we found that coxsackievirus A6 and enterovirus A71 could also be easily propagated using this serum-free HEK293A cell culture system. Our results provide a solution to overcome the obstacle in the propagation of CVA10 and facilitate the development of multivalent vaccines for prevention of HFMD.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Animais , Camundongos , Doença de Mão, Pé e Boca/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas de Produtos Inativados , Enterovirus Humano A/genética
13.
Clin Dev Immunol ; 2012: 831282, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23008736

RESUMO

Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot, and mouth diseases (HFMDs), and EV71 is now recognized as an emerging neurotropic virus in Asia. Effective medications and/or prophylactic vaccines against HFMD are not available. The current results from mouse immunogenicity studies using in-house standardized RD cell virus neutralization assays indicate that (1) VP1 peptide (residues 211-225) formulated with Freund's adjuvant (CFA/IFA) elicited low virus neutralizing antibody response (1/32 titer); (2) recombinant virus-like particles produced from baculovirus formulated with CFA/IFA could elicit good virus neutralization titer (1/160); (3) individual recombinant EV71 antigens (VP1, VP2, and VP3) formulated with CFA/IFA, only VP1 elicited antibody response with 1/128 virus neutralization titer; and (4) the formalin-inactivated EV71 formulated in alum elicited antibodies that cross-neutralized different EV71 genotypes (1/640), but failed to neutralize CVA16. In contrast, rabbits antisera could cross-neutralize strongly against different genotypes of EV71 but weakly against CVA16, with average titers 1/6400 and 1/32, respectively. The VP1 amino acid sequence dissimilarity between CVA16 and EV71 could partially explain why mouse antibodies failed to cross-neutralize CVA16. Therefore, the best formulation for producing cost-effective HFMD vaccine is a combination of formalin-inactivated EV71 and CAV16 virions.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/química , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Coelhos , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/virologia , Vacinas Sintéticas , Células Vero , Carga Viral/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/farmacologia , Vírion/imunologia
14.
Viruses ; 14(6)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746775

RESUMO

Hemagglutinin (HA) and neuraminidase (NA) are the two major envelope proteins of influenza viruses. The spatial organization of HA and NA on the virus surface needs to be optimized to promote viral fitness, host specificity, transmissibility, infectivity, and virulence. We previously demonstrated that the recombinant NA protein of the 2009 pandemic H1N1 (pH1N1) with the I365T/S366N mutation in the NA 370-loop elicited higher NA-inhibition antibody titers against the homologous pH1N1 virus and three heterologous H5N1, H3N2, and H7N9 viruses in mice. In this study, we used PR8-based reverse genetics (RG) by replacing the HA and NA genes of A/Texas/05/2009 pH1N1 virus to obtain the wild-type pH1N1 and three NA 370-loop mutant viruses of pH1N1 (I365T/S366N), RG pH1N1 (I365E/S366D), and RG pH1N1 (I365T/S366A). Our results revealed that the viral NA enzyme activity increased for the RG pH1N1(I365T/S366N) and RG pH1N1 (I365E/S366D) viruses but reduced for the RG pH1N1 (I365T/S366A) virus. The increased or decreased NA enzyme activity was found to correlate with the increase or decrease in HA titers of these NA 370-loop mutant viruses. All of these three NA 370-loop mutant RG pH1N1 viruses were less virulent than the wild-type RG pH1N1 virus in mice. Immunizations with the inactivated viruses carrying the three NA 370-loop mutations and the wild-type RG pH1N1 virus were found to elicit approximately the same titers of NA-inhibition antibodies against H1N1 and H5N1 viruses. These results may provide information for developing NA-based influenza virus vaccines.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Antígenos Virais , Hemaglutinação , Hemaglutininas , Vírus da Influenza A Subtipo H3N2/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Camundongos , Mutação , Neuraminidase , Virulência/genética
15.
Pharmaceutics ; 14(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35631599

RESUMO

Zika virus (ZIKV) infections in humans are mainly transmitted by the mosquito vectors, but human-to-human sexual transmission is also another important route. Developing a ZIKV mucosal vaccine that can elicit both systemic and mucosal immune responses is of particular interest. In this study, we constructed a recombinant ZIKV envelope DIII (ZDIII) protein genetically fused with Salmonella typhimurium flagellin (FliC-ZDIII) as a novel mucosal antigen for intranasal immunization. The results indicated that the FliC-ZDIII fusion proteins formulated with E. coli heat-labile enterotoxin B subunit (LTIIb-B5) adjuvant greatly increased the ZDIII-specific IgG, IgA, and neutralizing titers in sera, and the ZDIII-specific IgA titers in bronchoalveolar lavage and vaginal fluids. Protective immunity was further assessed by subcutaneous and intravaginal ZIKV challenges. The second-generation FliCΔD3-2ZDIII was shown to result in a reduced titer of anti-FliC IgG antibodies in sera and still retained the same levels of serum IgG, IgA, and neutralizing antibodies and mucosal IgA antibodies without compromising the vaccine antigenicity. Therefore, intranasal immunization with FliCΔD3-2ZDIII fusion proteins formulated with LTIIb-B5 adjuvant elicited the greatest protective immunity against subcutaneous and intravaginal ZIKV challenges. Our findings indicated that the combination of FliCΔD3-2ZDIII fusion proteins and LTIIb-B5 adjuvant for intranasal immunization can be used for developing ZIKV mucosal vaccines.

16.
J Virol ; 84(22): 12011-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20844030

RESUMO

Since dendritic cells may play a key role in defense against influenza virus infection, we examined the effects of recombinant hemagglutinin (HA) proteins derived from mouse-adapted H1N1 (A/WSN/1933), swine-origin 2009 pandemic H1N1 (A/Texas/05/2009), and highly pathogenic avian influenza H5N1 (A/Thailand/KAN-1/2004) viruses on mouse myeloid dendritic cells (mDCs). The results reveal that tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12) p70, and major histocompatibility complex class II (MHC-II) expression was increased in mDCs after treatment with recombinant HA proteins of H1N1 and H5N1. The specificity of recombinant HA treatments for mDC activation was diminished after proteinase K digestion. HA apparently promotes mDC maturation by enhancing CD40 and CD86 expression and suppressing endocytosis. No significant differences in mDC activation were observed among recombinant proteins of H1N1 and H5N1. The stimulation of mDCs by HA proteins of H1N1 and H5N1 was completely MyD88 dependent. These findings may provide useful information for the development of more-effective influenza vaccines.


Assuntos
Células Dendríticas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/imunologia , Animais , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
17.
Front Immunol ; 12: 692700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335603

RESUMO

The highly pathogenic avian influenza (HPAI) H5N1 viruses with the capability of transmission from birds to humans have a serious impact on public health. To date, HPAI H5N1 viruses have evolved into ten antigenically distinct clades that could cause a mismatch of vaccine strains and reduce vaccine efficacy. In this study, the glycan masking and unmasking strategies on hemagglutinin antigen were used for designing two antigens: H5-dm/st2 and H5-tm/st2, and investigated for their elicited immunity using two-dose recombinant H5 (rH5) immunization and a first-dose adenovirus vector prime, followed by a second-dose rH5 protein booster immunization. The H5-dm/st2 antigen was found to elicit broadly neutralizing antibodies against different H5N1 clade/subclade viruses, as well as more stem-binding antibodies to inhibit HA-facilitated membrane fusion activity. Mice immunized with the H5-dm/st2 antigen had a higher survival rate when challenged with homologous and heterologous clades of H5N1 viruses. Mutant influenza virus replaced with the H5-dm/st2 gene generated by reverse genetics (RG) technology amplified well in MDCK cells and embryonated chicken eggs. Again, the inactivated H5N1-dm/st2 RG virus elicited more potent cross-clade neutralizing and anti-fusion antibodies in sera. Therefore, the H5N1-dm/st2 RG virus with the site-specific glycan-masking on the globular head and the glycan-unmasking on the stem region of H5 antigen can be used for further development of cross-protective H5N1 vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/administração & dosagem , Anticorpos Amplamente Neutralizantes/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Epitopos Imunodominantes , Imunogenicidade da Vacina , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Polissacarídeos/administração & dosagem , Animais , Antígenos Virais/imunologia , Embrião de Galinha , Modelos Animais de Doenças , Cães , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunização , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Polissacarídeos/imunologia
18.
Front Immunol ; 12: 795741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925381

RESUMO

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired epitopes, without affecting the antigen's overall-folded structure. This study examined the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N/Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC-50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N/Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


Assuntos
Antígenos Virais/imunologia , COVID-19/imunologia , Epitopos/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adenoviridae/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Feminino , Engenharia Genética , Vetores Genéticos/genética , Humanos , Imunização , Camundongos , Testes de Neutralização , Polissacarídeos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
19.
Methods Mol Biol ; 2248: 139-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33185873

RESUMO

Virus-like particle (VLP) technology is an alternative platform for developing vaccines to combat seasonal and pandemic influenza. Influenza VLPs are non-infectious nanoparticles that can elicit effective vaccine immunogenicity in hosts. B-cell-activating factor (BAFF, or BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) superfamily of cytokines. Both BAFF and APRIL are homotrimers that interact with homotrimeric receptors. Here, we report a method of the production of influenza VLPs by molecular incorporation with BAFF or APRIL homotrimers to interact with their receptors. We engineered the VLPs by direct fusion of BAFF or APRIL to the transmembrane anchored domain of the hemagglutinin (HA) gene. We also describe procedures for the production of BAFF-VLPs containing H5H7 and H1H5H7 for multi-subtype vaccine development.


Assuntos
Antígenos Virais/imunologia , Fator Ativador de Células B/imunologia , Vacinas contra Influenza/imunologia , Proteínas Recombinantes de Fusão , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Antígenos Virais/genética , Fator Ativador de Células B/genética , Baculoviridae/genética , Clonagem Molecular , Expressão Gênica , Testes de Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Virus da Influenza A Subtipo H5N1/imunologia , Plasmídeos/genética , Proteínas Recombinantes de Fusão/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
20.
J Biomed Sci ; 17: 39, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20492732

RESUMO

The interaction between prM and E proteins in flavivirus-infected cells is a major driving force for the assembly of flavivirus particles. We used site-directed mutagenesis to study the potential role of the transmembrane domains of the prM proteins of Japanese encephalitis virus (JEV) in prM-E heterodimerization as well as subviral particle formation. Alanine insertion scanning mutagenesis within the GXXXG motif in the first transmembrane segment of JEV prM protein affected the prM-E heterodimerization; its specificity was confirmed by replacing the two glycines of the GXXXG motif with alanine, leucine and valine. The GXXXG motif was found to be conserved in the JEV serocomplex viruses but not other flavivirus groups. These mutants with alanine inserted in the two prM transmembrane segments all impaired subviral particle formation in cell cultures. The prM transmembrane domains of JEV may play importation roles in prM-E heterodimerization and viral particle assembly.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/química , Proteínas do Envelope Viral/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Dimerização , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Flavivirus/química , Flavivirus/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Spodoptera , Proteínas do Envelope Viral/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA