Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Immunol ; 25(1): 117-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012417

RESUMO

In cancer and infections, self-renewing stem-like CD8+ T cells mediate the response of immunotherapies and replenish terminally exhausted T cells and effector-like T cells. However, the programs governing the lineage choice in chimeric antigen receptor (CAR) T cells are unclear. Here, by simultaneously profiling single-cell chromatin accessibility and transcriptome in the same CAR T cells, we identified heterogeneous chromatin states within CD8+ T cell subsets that foreshadowed transcriptional changes and were primed for regulation by distinct transcription factors. Transcription factors that controlled each CD8+ T cell subset were regulated by high numbers of enhancers and positioned as hubs of gene networks. FOXP1, a hub in the stem-like network, promoted expansion and stemness of CAR T cells and limited excessive effector differentiation. In the effector network, KLF2 enhanced effector CD8+ T cell differentiation and prevented terminal exhaustion. Thus, we identified gene networks and hub transcription factors that controlled the differentiation of stem-like CD8+ CAR T cells into effector or exhausted CD8+ CAR T cells.


Assuntos
Linfócitos T CD8-Positivos , Fatores de Transcrição , Fatores de Transcrição/genética , Subpopulações de Linfócitos T , Diferenciação Celular , Cromatina
2.
Nat Immunol ; 22(3): 370-380, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33574619

RESUMO

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Assuntos
Infecções por Arenaviridae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Epigênese Genética , Células Precursoras de Linfócitos T/metabolismo , Transcrição Gênica , Animais , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem da Célula , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Precursoras de Linfócitos T/imunologia , Células Precursoras de Linfócitos T/virologia , Transdução de Sinais
3.
Nat Immunol ; 20(7): 890-901, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209400

RESUMO

Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Infecções/etiologia , Análise de Célula Única , Animais , Biomarcadores , Imunoprecipitação da Cromatina , Epigênese Genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Infecções/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Fatores de Tempo , Transcriptoma
5.
Immunity ; 38(4): 805-17, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23583644

RESUMO

CD4(+) T follicular helper (Tfh) cells provide the required signals to B cells for germinal center reactions that are necessary for long-lived antibody responses. However, it remains unclear whether there are CD4(+) memory T cells committed to the Tfh cell lineage after antigen clearance. By using adoptive transfer of antigen-specific memory CD4(+) T cell subpopulations in the lymphocytic choriomeningitis virus infection model, we found that there are distinct memory CD4(+) T cell populations with commitment to either Tfh- or Th1-cell lineages. Our conclusions are based on gene expression profiles, epigenetic studies, and phenotypic and functional analyses. Our findings indicate that CD4(+) memory T cells "remember" their previous effector lineage after antigen clearance, being poised to reacquire their lineage-specific effector functions upon antigen reencounter. These findings have important implications for rational vaccine design, where improving the generation and engagement of memory Tfh cells could be used to enhance vaccine-induced protective immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Transferência Adotiva , Animais , Antígenos Virais/imunologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Metilação de DNA/imunologia , Epigênese Genética/imunologia , Granzimas/genética , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CXCR5/metabolismo , Transcriptoma
6.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974559

RESUMO

mTOR has important roles in regulation of both innate and adaptive immunity, but whether and how mTOR modulates humoral immune responses have yet to be fully understood. To address this issue, we examined the effects of rapamycin, a specific inhibitor of mTOR, on B cell and CD4 T cell responses during acute infection with lymphocytic choriomeningitis virus. Rapamycin treatment resulted in suppression of virus-specific B cell responses by inhibiting proliferation of germinal center (GC) B cells. In contrast, the number of memory CD4 T cells was increased in rapamycin-treated mice. However, the drug treatment caused a striking bias of CD4 T cell differentiation into Th1 cells and substantially impaired formation of follicular helper T (Tfh) cells, which are essential for humoral immunity. Further experiments in which mTOR signaling was modulated by RNA interference (RNAi) revealed that B cells were the primary target cells of rapamycin for the impaired humoral immunity and that reduced Tfh formation in rapamycin-treated mice was due to lower GC B cell responses that are essential for Tfh generation. Additionally, we found that rapamycin had minimal effects on B cell responses activated by lipopolysaccharide (LPS), which stimulates B cells in an antigen-independent manner, suggesting that rapamycin specifically inhibits B cell responses induced by B cell receptor stimulation with antigen. Together, these findings demonstrate that mTOR signals play an essential role in antigen-specific humoral immune responses by differentially regulating B cell and CD4 T cell responses during acute viral infection and that rapamycin treatment alters the interplay of immune cell subsets involved in antiviral humoral immunity. IMPORTANCE: mTOR is a serine/threonine kinase involved in a variety of cellular activities. Although its specific inhibitor, rapamycin, is currently used as an immunosuppressive drug in transplant patients, it has been reported that rapamycin can also stimulate pathogen-specific cellular immunity in certain circumstances. However, whether and how mTOR regulates humoral immunity are not well understood. Here we found that rapamycin treatment predominantly inhibited GC B cell responses during viral infection and that this led to biased helper CD4 T cell differentiation as well as impaired antibody responses. These findings suggest that inhibition of B cell responses by rapamycin may play an important role in regulation of allograft-specific antibody responses to prevent organ rejection in transplant recipients. Our results also show that consideration of antibody responses is required in cases where rapamycin is used to stimulate vaccine-induced immunity.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Subpopulações de Linfócitos B/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Centro Germinativo/imunologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Imunização , Memória Imunológica , Imunomodulação/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Sirolimo/farmacologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transdução Genética , Viroses/imunologia , Viroses/metabolismo
7.
J Immunol ; 195(6): 2515-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276869

RESUMO

Viral infections induce the differentiation of naive CD4 T cells into two distinct lineages, Th1 cells and T follicular helper (TFH) cells. Two recent studies demonstrated that the microRNA cluster miR-17-92 selectively promotes CD4 TFH responses. However, we show in this study that miR-17-92 expression is required for the clonal expansion of both virus-specific Th1 and TFH cells. Upon viral infection, miR-17-92-deficient CD4 T cells showed impaired clonal expansion and subsequent memory formation. Although miR-17-92 deficiency impaired the clonal expansion of both Th1 and TFH cells, the expansion of Th1 cells was more affected. Overexpression of miR-17-92 in CD4 T cells resulted in increased expansion of both virus-specific Th1 and TFH cells but selectively enhanced the Th1 response. Taken together, our data suggest that miR-17-92 is necessary for both Th1 and TFH cells to respond efficiently to viral infections and that the Th1 response is more sensitive to the level of miR-17-92 expression.


Assuntos
Seleção Clonal Mediada por Antígeno/imunologia , MicroRNAs/genética , Infecções por Retroviridae/imunologia , Células Th1/imunologia , Animais , Proliferação de Células , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/biossíntese
8.
Proc Natl Acad Sci U S A ; 109(25): 9965-70, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22665768

RESUMO

MicroRNAs are important regulators of various developmental and physiological processes. However, their roles in the CD8(+) T-cell response are not well understood. Using an acute viral infection model, we show that microRNAs of the miR-17-92 cluster are strongly induced after T-cell activation, down-regulated after clonal expansion, and further silenced during memory development. miR-17-92 promotes cell-cycle progression of effector CD8(+) T cells, and its expression is critical to the rapid expansion of these cells. However, excessive miR-17-92 expression enhances mammalian target of rapamycin (mTOR) signaling and strongly skews the differentiation toward short-lived terminal effector cells. Failure to down-regulate miR-17-92 leads to a gradual loss of memory cells and defective central memory cell development. Therefore, our results reveal a temporal expression pattern of miR-17-92 by antigen-specific CD8(+) T cells during viral infection, the precise control of which is critical to the effector expansion and memory differentiation of CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/citologia , Memória Imunológica , MicroRNAs/genética , Linfócitos T CD8-Positivos/imunologia , Regulação para Baixo , Inativação Gênica , Humanos , Ativação Linfocitária , RNA Longo não Codificante , Serina-Treonina Quinases TOR/metabolismo
9.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979360

RESUMO

The progressive decline of CD8 T cell effector function-also known as terminal exhaustion-is a major contributor to immune evasion in cancer. Yet, the molecular mechanisms that drive CD8 T cell dysfunction remain poorly understood. Here, we report that the Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor erythroid 2-related factor 2 (NRF2) signaling axis, which mediates cellular adaptations to oxidative stress, directly regulates CD8 T cell exhaustion. Transcriptional profiling of dysfunctional CD8 T cells from chronic infection and cancer reveals enrichment of NRF2 activity in terminally exhausted (Texterm) CD8 T cells. Increasing NRF2 activity in CD8 T cells (via conditional deletion of KEAP1) promotes increased glutathione production and antioxidant defense yet accelerates the development of terminally exhausted (PD-1+TIM-3+) CD8 T cells in response to chronic infection or tumor challenge. Mechanistically, we identify PTGIR, a receptor for the circulating eicosanoid prostacyclin, as an NRF2-regulated protein that promotes CD8 T cell dysfunction. Silencing PTGIR expression restores the anti-tumor function of KEAP1-deficient T cells. Moreover, lowering PTGIR expression in CD8 T cells both reduces terminal exhaustion and enhances T cell effector responses (i.e. IFN-γ and granzyme production) to chronic infection and cancer. Together, these results establish the KEAP1-NRF2 axis as a metabolic sensor linking oxidative stress to CD8 T cell dysfunction and identify the prostacyclin receptor PTGIR as an NRF2-regulated immune checkpoint that regulates CD8 T cell fate decisions between effector and exhausted states.

10.
Development ; 137(15): 2461-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20573703

RESUMO

Tuberous sclerosis complex human disease gene products TSC1 and TSC2 form a functional complex that negatively regulates target of rapamycin (TOR), an evolutionarily conserved kinase that plays a central role in cell growth and metabolism. Here, we describe a novel role of TSC1/2 in controlling stem cell maintenance. We show that in the Drosophila ovary, disruption of either the Tsc1 or Tsc2 gene in germline stem cells (GSCs) leads to precocious GSC differentiation and loss. The GSC loss can be rescued by treatment with TORC1 inhibitor rapamycin, or by eliminating S6K, a TORC1 downstream effecter, suggesting that precocious differentiation of Tsc1/2 mutant GSC is due to hyperactivation of TORC1. One well-studied mechanism for GSC maintenance is that BMP signals from the niche directly repress the expression of a differentiation-promoting gene bag of marbles (bam) in GSCs. In Tsc1/2 mutant GSCs, BMP signalling activity is downregulated, but bam expression is still repressed. Moreover, Tsc1 bam double mutant GSCs could differentiate into early cystocytes, suggesting that TSC1/2 controls GSC differentiation via both BMP-Bam-dependent and -independent pathways. Taken together, these results suggest that TSC prevents precocious GSC differentiation by inhibiting TORC1 activity and subsequently differentiation-promoting programs. As TSC1/2-TORC1 signalling is highly conserved from Drosophila to mammals, it could have a similar role in controlling stem cell behaviour in mammals, including humans.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Células Germinativas/citologia , Células-Tronco/citologia , Animais , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Cruzamentos Genéticos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia de Fluorescência/métodos , Modelos Biológicos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
11.
Angew Chem Int Ed Engl ; 52(42): 11106-9, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24038865

RESUMO

Sun block for nanoparticles: Unintentional photorelease triggered by UV light is a problem in photodynamic therapy. Encapsulating upconverting nanoparticles containing photoswitches in a UV-blocking amphiphilic polymer shuts down the one-photon process and only allows two-photon-driven photochemistry. Thus, UV light is blocked while NIR light can reach the nanoparticle core and trigger photorelease.

12.
Angew Chem Int Ed Engl ; 51(11): 2741-4, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22287507

RESUMO

In the right light: UV light triggers bond breaking, liberates a caged carboxylic acid, and generates the central C=C double bond in the photoresponsive hexatriene molecule of a dithienylethene molecular switch. Light of the same wavelength converts the colorless isomer into its colored counterpart in a visually convenient method to report on the success of the release event.


Assuntos
Raios Ultravioleta , Benzofuranos/química , Ácidos Carboxílicos/química , Processos Fotoquímicos
13.
Clin Cancer Res ; 28(23): 5013-5020, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819272

RESUMO

Immunotherapy has made a significant impact in many tumors, including renal cell carcinoma (RCC). RCC has been known to be immunoresponsive since the cytokine era of IFNα and IL2, but only a small number of patients had durable clinical benefit. Since then, discoveries of key tumor drivers, as well as an understanding of the contribution of angiogenesis and the tumor microenvironment (TME), has led to advances in drug development, ultimately transforming patient outcomes. Combinations of anti-angiogenic agents with immune checkpoint inhibitors are now standard of care. Current challenges include patient selection for immunotherapy combinations, resistance acquisition, and optimally sequencing therapies. Further discoveries about RCC biology, the TME, and resistance mechanisms will likely pave the way for the next generation of therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Imunoterapia , Fatores Imunológicos/uso terapêutico , Microambiente Tumoral
14.
Nat Commun ; 12(1): 5857, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615877

RESUMO

The recently identified G-protein-coupled receptor GPR171 and its ligand BigLEN are thought to regulate food uptake and anxiety. Though GPR171 is commonly used as a T cell signature gene in transcriptomic studies, its potential role in T cell immunity has not been explored. Here we show that GPR171 is transcribed in T cells and its protein expression is induced upon antigen stimulation. The neuropeptide ligand BigLEN interacts with GPR171 to suppress T cell receptor-mediated signalling pathways and to inhibit T cell proliferation. Loss of GPR171 in T cells leads to hyperactivity to antigen stimulation and GPR171 knockout mice exhibit enhanced antitumor immunity. Blockade of GPR171 signalling by an antagonist promotes antitumor T cell immunity and improves immune checkpoint blockade therapies. Together, our study identifies the GPR171/BigLEN axis as a T cell checkpoint pathway that can be modulated for cancer immunotherapy.


Assuntos
Imunidade , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Imunoterapia , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/terapia , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Transdução de Sinais
15.
Cell Rep ; 37(2): 109804, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644563

RESUMO

Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.


Assuntos
Linfócitos T CD8-Positivos/enzimologia , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Memória Imunológica , Doenças da Imunodeficiência Primária/enzimologia , Transcrição Gênica , Viroses/enzimologia , Adolescente , Adulto , Animais , Apoptose , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Estudos de Casos e Controles , Criança , Cromatina/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Modelos Animais de Doenças , Ativação Enzimática , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Transdução de Sinais , Viroses/genética , Viroses/imunologia
16.
J Exp Med ; 216(8): 1791-1808, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31164392

RESUMO

Chronic infection and cancer are associated with suppressed T cell responses in the presence of cognate antigen. Recent work identified memory-like CXCR5+ TCF1+ CD8+ T cells that sustain T cell responses during persistent infection and proliferate upon anti-PD1 treatment. Approaches to expand these cells are sought. We show that blockade of interferon type 1 (IFN-I) receptor leads to CXCR5+ CD8+ T cell expansion in an IL-27- and STAT1-dependent manner. IFNAR1 blockade promoted accelerated cell division and retention of TCF1 in virus-specific CD8+ T cells. We found that CD8+ T cell-intrinsic IL-27 signaling safeguards the ability of TCF1hi cells to maintain proliferation and avoid terminal differentiation or programmed cell death. Mechanistically, IL-27 endowed rapidly dividing cells with IRF1, a transcription factor that was required for sustained division in a cell-intrinsic manner. These findings reveal that IL-27 opposes IFN-I to uncouple effector differentiation from cell division and suggest that IL-27 signaling could be exploited to augment self-renewing T cells in chronic infections and cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Autorrenovação Celular/imunologia , Interleucinas/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Memória Imunológica , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interleucinas/genética , Coriomeningite Linfocítica/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptores CXCR5/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transcriptoma
17.
Nat Commun ; 10(1): 2157, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089138

RESUMO

T cell senescence and exhaustion are major barriers to successful cancer immunotherapy. Here we show that miR-155 increases CD8+ T cell antitumor function by restraining T cell senescence and functional exhaustion through epigenetic silencing of drivers of terminal differentiation. miR-155 enhances Polycomb repressor complex 2 (PRC2) activity indirectly by promoting the expression of the PRC2-associated factor Phf19 through downregulation of the Akt inhibitor, Ship1. Phf19 orchestrates a transcriptional program extensively shared with miR-155 to restrain T cell senescence and sustain CD8+ T cell antitumor responses. These effects rely on Phf19 histone-binding capacity, which is critical for the recruitment of PRC2 to the target chromatin. These findings establish the miR-155-Phf19-PRC2 as a pivotal axis regulating CD8+ T cell differentiation, thereby paving new ways for potentiating cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma Experimental/imunologia , MicroRNAs/metabolismo , Neoplasias Cutâneas/imunologia , Fatores de Transcrição/metabolismo , Transferência Adotiva/métodos , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Senescência Celular/genética , Senescência Celular/imunologia , Epigênese Genética/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma Experimental/genética , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Complexo Repressor Polycomb 2/imunologia , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
18.
ACS Omega ; 3(7): 7673-7680, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458917

RESUMO

The local environments within an amphiphilic polymer shell wrapped around lanthanide-doped upconverting nanoparticles were probed using steady-state and time-resolved fluorescence spectroscopy techniques. Emission lifetime measurements of pyrene chromophores trapped within the polymer shell reveal that there are at least two environments, where the organic pyrene molecules are encapsulated in hydrophobic environments that have lower polarity than in water. The migration of pyrene chromophores from their initial location to another location was also observed, demonstrating that the polymeric shell provides both hydrophobicity and mobility for entrapped molecules. These results offer insight into what outcomes can be expected when chemical reactions are carried out in these nanoassemblies, especially if they are to be used as nanoreactors for synthesis or delivery vehicles for therapeutics.

19.
Chem Commun (Camb) ; 52(56): 8636-44, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27270956

RESUMO

This overview highlights how the high-energy ultraviolet or visible light required to drive photochemical reactions can be overcome by integrating the chromophores into supramolecular structures containing upconverting nanoparticles with trivalent lanthanide dopants (such as Tm(3+) and Er(3+)). These nanoparticles are particularly interesting systems because they absorb multiple photons of near infrared light and convert them into higher-energy light which is emitted in the ultraviolet and visible regions of the electromagnetic spectrum. The upconverting nanoparticles effectively act as nanoscopic 'light bulbs', and in this way, less damaging near infrared light can be used to trigger photochemical reactions for use in imaging and small molecule release. Several examples of how this phenomenon is being used in photochemistry will be presented with the focus being on self-assembled supramolecular systems, some of which are being used in cells and small animals.

20.
Sci Immunol ; 1(4)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27812556

RESUMO

Studies have established a role for T cells in resolving persistent viral infections, yet emerging evidence indicates that both T and B cells are required to control some viruses. During persistent infection, a marked lag or failure to generate neutralizing antibodies is commonly observed and likely contributes to an inability to control certain pathogens. Using lymphocytic choriomeningitis virus (LCMV) as a model, we have examined how a persistent viral infection can suppress neutralizing humoral immunity. By tracking the fate of virus-specific B cells in vivo, we report that LCMV-specific B cells were rapidly deleted within a few days of persistent infection, and this deletion was completely reversed by blockade of type I interferon (IFN-I) signaling. Early interference with IFN-I signaling promoted survival and differentiation of LCMV-specific B cells, which accelerated the generation of neutralizing antibodies. This marked improvement in antiviral humoral immunity did not rely on the cessation of IFN-I signaling in B cells but on alterations in the virus-specific CD8+ T cell response. Using two-photon microscopy and in vivo calcium imaging, we observed that cytotoxic T lymphocytes (CTLs) productively engaged and killed LCMV-specific B cells in a perforin-dependent manner within the first few days of infection. Blockade of IFN-I signaling protected LCMV-specific B cells by promoting CTL dysfunction. Therapeutic manipulation of this pathway may facilitate efforts to promote humoral immunity during persistent viral infection in humans. Our findings illustrate how events that occur early after infection can disturb the resultant adaptive response and contribute to viral persistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA