Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Anal Chem ; 96(6): 2514-2523, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289041

RESUMO

The urine bioassay method for transuranium nuclides (237Np, 239,240,241Pu, 241Am, and 244Cm) is needed to quickly assess the potential internal contamination in emergency situations. However, in the case that the analysis of multiple radionuclides is required in the same sample, time-consuming/tedious sequential analytical procedures using multiple chromatographic separation resins would have to be employed for the separation of every single radionuclide. In this work, a rapid method for the simultaneous determination of transuranium nuclides in urine was developed by using triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) combined with a single DGA resin column. The chemical behaviors of Np/Pu and Am/Cm on the DGA resin were consistent in 8-10 mol/L HNO3 and 0.005-0.02 mol/L NaNO2 when 242Pu and 243Am were selected as tracers for Np/Pu and Am/Cm yield monitoring. Based on their different reaction rates with O2, 237Np, 239,240,241Pu, 241Am, and 244Cm in the same solution were simultaneously measured by ICP-MS/MS in the same run. The elimination efficiency of 238U+ tailing (7.43 × 10-9), 238U1H16O2+/238U16O2+ (8.11 × 10-8) and cross contamination of 241Pu and 241Am (<1%) were achieved using 10.0 mL/min He-0.3 mL/min O2 even if the eluate was directly measured without any evaporation. The detection limits of transuranium nuclides were at the femtogram level, demonstrating the feasibility of ICP-MS/MS for simultaneous transuranic radionuclides urinalysis. The developed method was validated by analyzing the spiked urine samples.


Assuntos
Radioisótopos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Radioisótopos/análise , Análise Espectral , Cromatografia , Urinálise
2.
J Am Chem Soc ; 145(27): 14679-14685, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366004

RESUMO

225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Distribuição Tecidual , Radioisótopos , Compostos Radiofarmacêuticos , Neoplasias/tratamento farmacológico
3.
J Am Chem Soc ; 145(32): 18148-18159, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531566

RESUMO

Efficient transfer of charge carriers through a fast transport pathway is crucial to excellent photocatalytic reduction performance in solar-driven CO2 reduction, but it is still challenging to effectively modulate the electronic transport pathway between photoactive motifs by feasible chemical means. In this work, we propose a thermally induced strategy to precisely modulate the fast electron transport pathway formed between the photoactive motifs of a porphyrin metal-organic framework using thorium ion with large ionic radius and high coordination number as the coordination-labile metal node. As a result, the stacking pattern of porphyrin molecules in the framework before and after the crystal transformations has changed dramatically, which leads to significant differences in the separation efficiency of photogenerated carriers in MOFs. The rate of photocatalytic reduction of CO2 to CO by IHEP-22(Co) reaches 350.9 µmol·h-1·g-1, which is 3.60 times that of IHEP-21(Co) and 1.46 times that of IHEP-23(Co). Photoelectrochemical characterizations and theoretical calculations suggest that the electron transport channels formed between porphyrin molecules inhibit the recombination of photogenerated carriers, resulting in high performance for photocatalytic CO2 reduction. The interaction mechanism of CO2 with IHEP-22(Co) was clarified by using in-situ electron paramagnetic resonance, in-situ diffuse reflectance infrared Fourier transform spectroscopy, in-situ extended X-ray absorption fine structure spectroscopy, and theoretical calculations. These results provide a new method to regulate the efficient separation and migration of charge carriers in CO2 reduction photocatalysts and will be helpful to guide the design and synthesis of photocatalysts with superior performance for the production of solar fuels.

4.
Inorg Chem ; 62(21): 8179-8187, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37192470

RESUMO

Separation of minor actinides from lanthanides is one of the biggest challenges in spent fuel reprocessing due to the similar physicochemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)). Therefore, developing ligands with excellent extraction and separation performance is essential at present. As an excellent pre-organization platform, calixarene has received more attention on Ln(III)/An(III) separation. In this work, we systematically explored the complexation behaviors of the diglycolamide (DGA)/dimethylacetamide (DMA)-functionalized calix[4]arene extractants for Eu(III) and Am(III) using relativistic density functional theory (DFT). These calix[4]arene-derived ligands were obtained by functionalization with two or four binding units at the narrow edge of the calix[4]arene platform. All bonding nature analyses suggested that the Eu-L complexes possess stronger interaction compared to Am-L analogues, resulting in the higher extraction capacity of the these calix[4]arene ligands toward Eu(III). Thermodynamic analysis demonstrates that these pre-organized ligands on the calix[4]arene platform with four binding units yield better extraction abilities than the single ligands. Although DMA-functionalized ligands show stronger complexation stability for metal ions, in acidic solutions, the calix[4]arene ligands with DGA binding units have better extraction performance for Eu(III) and Am(III) due to the basicity of the DMA ligand. This work enabled us to gain a deeper understanding of the bonding properties between supramolecular ligands and lanthanides/actinides and afford useful insights into designing efficient supramolecular ligands for separating Ln(III)/An(III).

5.
Inorg Chem ; 61(8): 3368-3373, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164505

RESUMO

Solar-initiated CO2 reduction is significant for green energy development. Herein, we have prepared a new mesoporous/microporous porphyrin metal-organic framework (MOF), IHEP-20, loaded with polymetallic oxygen clusters (POMs) to form a composite material POMs@IHEP-20 for visible-light-driven photocatalytic CO2 reduction. The as-made composite material exhibits good stability in water from pH 0 to 11. After POMs were introduced to IHEP-20, they showed superior activity toward photocatalytic CO2 reduction with a CO production rate of 970 µmol·g-1·h-1, which is 3.27 times higher than that of pristine IHEP-20. This study opens a new door for the design and synthesis of high-performance catalysts for the photocatalytic reduction of CO2.

6.
Inorg Chem ; 61(10): 4404-4413, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35230088

RESUMO

Effective separation and recovery of chemically similar transplutonium elements from adjacent actinides is extremely challenging in spent fuel reprocessing. Deep comprehension of the complexation of transplutonium elements and ligands is significant for the design and development of ligands for the in-group separation of transplutonium elements. Because of experimental difficulties of transplutonium elements, theoretical calculation has become an effective means of exploring transplutonium complexes. In this work, we systematically investigated the coordination mechanism between transplutonium elements (An = Am, Cm, Bk, Cf) and two crown ether macrocyclic ligands [N,N'- bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2bp18c6) and N,N'-bis[(6-methylphosphinic-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2bpp18c6)] through quasi-relativistic density functional theory. The extraction complexes of [Anbp18c6]+ and [Anbpp18c6]+ possess similar geometrical structures with actinide atoms located in the cavity of the ligands. Bonding nature analysis indicates that the coordination ability of the coordinating atoms in pendent arms is stronger than that in the crown ether macrocycle because of the limitation of the macrocycle. Most of the coordination atoms of the H2bp18c6 ligand have a stronger ability to coordinate with metal ions than those of the H2bpp18c6 ligand. In addition, the bonding strength between the metal ions and ligands gradually weakens from Am to Cf, which is mainly attributed to the size selectivity of the ligands. Thermodynamic analysis shows that the H2bp18c6 ligand has a stronger extraction capacity than the H2bpp18c6 ligand, while the H2bpp18c6 ligand is superior in terms of the in-group separation ability. The extraction capacity of the two ligands for metal ions gradually decreases across the actinide series, indicating that these crown ether macrocycle ligands have size selectivity for these actinide cations as a result of steric constraint of the crown ether ring. We hope that these results offer theoretical clues for the development of macrocycle ligands for in-group transplutonium separation.

7.
Inorg Chem ; 60(4): 2149-2159, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33522798

RESUMO

The development of actinide decorporation agents with high complexation affinity, high tissue specificity, and low biological toxicity is of vital importance for the sustained and healthy development of nuclear energy. After accidental actinide intake, sequestration by chelation therapy to reduce acute damage is considered as the most effective method. In this work, a series of bis- and tetra-phosphonated pyridine ligands have been designed, synthesized, and characterized for uranyl (UO22+) decorporation. Owing to the absorption of the ligand and the luminescence of the uranyl ion, UV-vis spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS) were used to probe in situ complexation and structure variation of the complexes formed by the ligands with uranyl. Density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) spectroscopy on uranyl-ligand complexes revealed the coordination geometry around the uranyl center at pH 3 and 7.4. High affinity constants (log K ∼17) toward the uranyl ion were determined by displacement titration. A preliminary in vitro chelation study proves that bis-phosphonated pyridine ligands can remove uranium from calmodulin (CaM) at a low dose and in the short term, which supports further uranyl decorporation applications of these ligands.

8.
Inorg Chem ; 60(2): 651-659, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33382238

RESUMO

The stability of many MOFs is not satisfactory, which severely limits the exploration of their potential applications. Given this, we have proposed a strategy to improve the stability of MOFs by introducing alkali metal K+ capable of coordinating with metal nodes, which finally induces the interpenetrating uranyl-porphyrin framework to connect as a whole (IHEP-9). The stability experiments reveal that the IHEP-9 has good thermal stability up to 400 °C and can maintain its crystalline state in the aqueous solution with pH ranging from 2 to 11. The catalytic activity of IHEP-9 as a heterogeneous photocatalyst for CO2 cycloaddition under the driving of visible light at room temperature is also demonstrated. This induced interpenetration and fixation method may be promising for the fabrication of more functional MOFs with improved structural stability.

9.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673249

RESUMO

The low cost ß-zeolite and ethylenediamine modified ß-zeolite (EDA@ß-zeolite) were prepared by self-assembly method and used for Cu(II) removal from contaminated aqueous solution. Removal ability of ß-zeolite toward Cu(II) was greatly improved after ethylenediamine (EDA) modification, the removal performance was greatly affected by environmental conditions. XPS results illustrated that the amide group played important role in the removal process by forming complexes with Cu(II). The EDA@ß-zeolite showed desirable recycling ability. The finding herein suggested that the proposed composite is a promising and suitable candidate for the removal of Cu(II) from contaminated natural wastewater and aquifer.


Assuntos
Cobre/isolamento & purificação , Etilenodiaminas/química , Poluentes Químicos da Água/isolamento & purificação , Zeolitas/química , Adsorção , Cobre/toxicidade , Humanos , Água/química , Poluentes Químicos da Água/toxicidade
10.
J Fluoresc ; 30(4): 883-890, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32494936

RESUMO

Based on boron-dipyrromethene (BODIPY), taking 2-hydroxy-N-(2-hydroxyphenyl)benzamide as recognition site, a new fluorescent probe HHPBA-BODIPY aimed at sensitively detecting Cu ions was designed, synthesized and characterized.The emission spectra of HHPBA-BODIPY exhibited an intensive green fluorescence around 510 nm, with a maximum absorption near 500 nm. When Cu2+ ions are present, the fluorescence at 510 nm can be quenched with a good linearity between the copper ion concentrationand the fluorescence intensity and the detection limit is 0.35 µM. HHPBA-BODIPY is also selective toward Cu2+, while other metal ions show no interfere except Fe3+ and Cr3+ ions. In addition, HHPBA-BODIPY also proved efficient to detect Cu2+ in water samples which offers the possibility to detect trace amount of Cu2+ for environmental monitoring. Copper ions; BODIPY; fluorescent probe.

11.
J Environ Sci (China) ; 75: 115-123, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473276

RESUMO

Sorption of U(VI) onto TiO2 as functions of pH, ionic strength, contact time, soil humic acid (SHA), solid-to-liquid ratio and temperature was studied under ambient conditions using batch and spectroscopic approaches. The sorption of U(VI) on TiO2 was significantly dependent on pH and ionic strength. The presence of SHA slightly enhanced the sorption of U(VI) on TiO2 below pH4.0, while it inhibited U(VI) sorption in the higher pH range. U(VI) sorption on TiO2 was favored at high temperatures, and the sorption process was estimated to be endothermic and spontaneous. Reduction of U(VI) to lower valent species was confirmed by X-ray photo-electron spectroscopy analysis. It is very interesting to find that U(VI) sorption on TiO2 was promoted in solutions with higher back-ground electrolyte concentrations. In the presence of U(VI), higher back-ground electrolyte made more TiO2 particles aggregate through (001) facets, leading more (101) facets to be exposed. Therefore, the reduction of U(VI) was enhanced by the exposed (101) facets and more U(VI) removal was observed.


Assuntos
Substâncias Húmicas , Titânio/química , Urânio/química , Adsorção , Concentração de Íons de Hidrogênio , Íons , Modelos Químicos , Concentração Osmolar , Solo , Temperatura , Titânio/análise
12.
J Fluoresc ; 28(4): 933-941, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29938389

RESUMO

A new boron-dipyrromethene (BODIPY) fluorescent dye aimed at sensitively detecting hypochlorite anion (ClO-) has been designed, synthesized and characterized. The probe is comprised of a BODIPY fluorophore unit and a ClO- specific reactive group of amidoxime. The addition of hypochlorite results in a red-shift of absorption and emission spectra of the probe accompanied by a decrease of intensity and spectra changes (A500 and 1/I512) of the probe can achieve a good linearity to the concentration of ClO-. The fluorescence probe can react to ClO- rapidly (within 60 s) in a wide pH range (4-10) with high sensitivity (detection limit of 6.81 µM) and selectivity. The reaction mechanism has been proposed and confirmed by MS analysis, ClO- anion oxidizes amidoxime moiety to hydroxyl group and hydroxyl group is further oxidized to formyl group in the formation of a corresponding aldehyde compound. In addition, the probe has also been successfully applied to detect ClO- in tap water and river water samples by spiking a known amount of standard ClO-.

13.
Anal Chem ; 88(23): 11931-11937, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27813399

RESUMO

An extremely high accumulation and retention of technetium in marine plants, especially brown seaweed, makes it a unique bioindicator of technetium. In the present work, a novel approach was developed for the speciation analysis of technetium in seaweed, wherein a series of biochemical separations was exploited to isolate different species of technetium. Inductively coupled plasma mass spectrometry (ICP-MS) was applied for the measurement of 99Tc after thorough radiochemical preconcentration and purification. The results show that the distribution of technetium species in seaweed is relatively dispersive. Besides the inorganic species of TcO4-, most of technetium (>75%) combined with organic components of seaweed such as algin, cellulose, and pigment. This investigation could provide important fundamental knowledge for studying the processes and mechanisms of 99Tc accumulation in the natural seaweed.


Assuntos
Alga Marinha/química , Tecnécio/análise , Espectrometria de Massas , Radioquímica
14.
Anal Chem ; 88(20): 10002-10010, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27618293

RESUMO

Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H+ concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.

15.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786775

RESUMO

Although titanium dioxide (TiO2) has a wide range of potential applications, the photocatalytic performance of TiO2 is limited by both its limited photoresponse range and fast recombination of the photogenerated charge carriers. In this work, the preparation of nitrogen (N)-doped TiO2 accompanied by the introduction of oxygen vacancy (Vo) has been achieved via a facile annealing treatment with urea as the N source. During the annealing treatment, the presence of urea not only realizes the N-doping of TiO2 but also creates Vo in N-doped TiO2 (N-TiO2), which is also suitable for commercial TiO2 (P25). Unexpectedly, the annealing treatment-induced decrease in the specific surface area of N-TiO2 is inhibited by the N-doping and, thus, more active sites are maintained. Therefore, both the N-doping and formation of Vo as well as the increased active sites contribute to the excellent photocatalytic performance of N-TiO2 under visible light irradiation. Our work offers a facile strategy for the preparation of N-TiO2 with Vo via the annealing treatment with urea.

16.
Chem Sci ; 15(27): 10455-10463, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994416

RESUMO

Efficient separation of uranium from seawater stands as a pivotal challenge. This study unveils an approach focusing on the ingenious design of biomimetic two-dimensional (2D) membranes tailored explicitly for this purpose. Leveraging the unique interplay of DNA strands housing U aptamers, pH-responsive i-motifs, and poly A(10) segments ingeniously embedded within graphene oxide membranes, a distinctive biomimetic 2D channel is engineered. The strategic integration of these bio-inspired elements enables dynamic adjustment of interlayer spacing, augmenting both the permeability of the membrane and the selectivity of the aptamer for uranyl ions. During the separation process, the encounter between uranyl ions and the enhanced aptamer within the interlayers initiates a crucial interaction, triggering a specific concentration polarization mechanism. This mechanism stands as the cornerstone for achieving a highly selective separation of uranyl ions from the vast and complex matrix of seawater. The membrane exhibits excellent performance in real seawater, with a rejection rate of uranyl ions of ≈100% and sustained selectivity of uranyl ions over ten cycles. Importantly, the selectivity of uranium and vanadium can reach 14.66. The significance of this research lies not only in the effective separation of uranyl ions but also in showcasing the broader applicability of 2D membrane design in chemical engineering.

17.
Water Res ; 255: 121514, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554633

RESUMO

The phosphorus-containing reagents have been proposed to remediate the uranium contaminated sites due to the formation of insoluble uranyl phosphate mineralization products. However, the colloids, including both pseudo and intrinsic uranium colloids, could disturb the environmental fate of uranium due to its nonnegligible mobility. In this work, the transport pattern and micro-mechanism of uranium coupled to phosphate and illite colloid (IC) were investigated by combining column experiments and micro-spectroscopic evidences. Results showed that uranium transport was facilitated in granular media by forming the intrinsic uranyl phosphate colloid (such as Na-autunite) when the pH > 3.5 and CNa+ < 10 mM. Meanwhile, the mobility of uranium depended greatly on the typical water chemistry parameters governing the aggregation and deposit of intrinsic uranium colloids. However, the attachment of phosphate on illite granule increased the repulsive force and enhanced the dispersion stability of IC in the IC-U(VI)-phosphate ternary system. The non-preequilibrium transport and retention profiles, HRTEM-mapping, as well as TRLFS spectra revealed that the IC enhanced uranium mobility by forming the ternary IC-uranyl phosphate hybrid, and acted as the coagulation preventing agent for uranyl phosphate particles. This observed facilitation of uranium transport resulted from the formation of intrinsic uranyl phosphate colloids and IC-uranyl phosphate hybrids should be taken into consideration when evaluating the potential risk of uranium migration and optimizing the in-situ mineralization remediation strategy for uranium contaminated environmental water.

18.
Adv Healthc Mater ; : e2401438, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744050

RESUMO

Brachytherapy stands as an essential clinical approach for combating locally advanced tumors. Here, an injectable brachytherapy hydrogel is developed for the treatment of both local and metastatic tumor. Fe-tannins nanoparticles are efficiently and stably radiolabeled with clinical used therapeutic radionuclides (such as 131I, 90Y, 177Lu, and 225Ac) without a chelator, and then chemically cross-linked with 4-armPEG-SH to form brachytherapy hydrogel. Upon intratumoral administration, magnetic resonance imaging (MRI) signal from ferric ions embedded within the hydrogel directly correlates with the retention dosage of radionuclides, which can real-time monitor radionuclides emitting short-range rays in vivo without penetration limitation during brachytherapy. The hydrogel's design ensures the long-term tumor retention of therapeutic radionuclides, leading to the effective eradication of local tumor. Furthermore, the radiolabeled hydrogel is integrated with an adjuvant to synergize with immune checkpoint blocking therapy, thereby activating potent anti-tumor immune responses and inhibiting metastatic tumor growth. Therefore, this work presents an imageable brachytherapy hydrogel for real-time monitoring therapeutic process, and expands the indications of brachytherapy from treatment of localized tumors to metastatic tumors.

19.
Environ Sci Process Impacts ; 25(5): 954-963, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37052246

RESUMO

Previous research studies have confirmed that Zn and Cd are the most predominant heavy metals in the Baiyin district, Gansu province, China. Furthermore, the speciation of Zn and Cd is a key factor in controlling the mobility, bioavailability, and toxicity of metals in Zn/Cd co-contaminated soil. In this study, the speciation of Zn and Cd in different types of agricultural soils including the Yellow River irrigated soil (s3) and sewage irrigated soil (s1 and s2) was investigated and compared by a combination of sequential extraction, bulk X-ray absorption fine structure (XAFS), and micro-X-ray fluorescence (µ-XRF) techniques. The results of the speciation quantified by XAFS were in general agreement with those obtained by sequential extraction, and the combination of both approaches allowed a reliable description of Zn/Cd speciation in soil. The speciation of Zn in the s1 soil exposed around the smelter was similar to speciation of Zn in the sewage irrigated s2 soil. In both soils, Zn was predominantly present as Zn-Al LDH (31-36%), Zn adsorbed on calcite (37-47%), and primary minerals (14-18% sphalerite and 9% franklinite). In contrast, the proportions of organic Zn (23%) and Zn-Al LDH (53%) were significantly higher in the Yellow River irrigated s3 soil, while that of Zn-calcite (24%) was lower. This indicated that Zn in s3 was less mobile and bioavailable than that in s1 and s2 soils. The content of bioavailable Zn in s3 was much lower than the background value and Zn did not pose a threat to the Yellow River irrigated soil. In addition, Cd was strongly correlated with Zn content and exhibited a simpler speciation. Cd adsorbed on illite and calcite was found as the major species in both soil types, posing higher migration and toxicity to the environment. Our study reported the speciation and correlation of Zn/Cd in sierozem soil for the first time and provided a significant theoretical basis for remediation actions to minimize Zn/Cd risks.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Cádmio , Raios X , Fluorescência , Esgotos , Síncrotrons , Metais Pesados/análise , Zinco/análise , Carbonato de Cálcio , China , Poluentes do Solo/análise
20.
Discov Nano ; 18(1): 112, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695406

RESUMO

MOFs have considerable adsorption capacity due to their huge specific surface area. They have the characteristics of photocatalysts for their organic ligands can absorb photons and produce electrons. In this paper, the photodegradation properties of TiO2 composites loaded with UiO-66 were investigated for the first time for MO. A series of TiO2@UiO-66 composites with different contents of TiO2 were prepared by a solvothermal method. The photocatalytic degradation of methyl orange (MO) was performed using a high-pressure mercury lamp as the UV light source. The effects of TiO2 loading, catalyst dosage, pH value, and MO concentration were investigated. The results showed that the degradation of MO by TiO2@UiO-66 could reach 97.59% with the addition of only a small amount of TiO2 (5 wt%). TiO2@UiO-66 exhibited significantly enhanced photoelectron transfer capability and inhibited efficient electron-hole recombination compared to pure TiO2 in MO degradation. The composite catalyst indicated good stability and reusability when they were recycled three times, and the photocatalytic reaction efficiencies were 92.54%, 88.76%, and 86.90%. The results provide a new option to design stable, high-efficiency MOF-based photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA