Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(6): e0221621, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080424

RESUMO

The development of antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been hampered by the lack of efficient cell-based replication systems that are amenable to high-throughput screens in biosafety level 2 laboratories. Here we report that stable cell clones harboring autonomously replicating SARS-CoV-2 RNAs without spike (S), membrane (M), and envelope (E) genes can be efficiently derived from the baby hamster kidney (BHK-21) cell line when a pair of mutations were introduced into the non-structural protein 1 (Nsp1) of SARS-CoV-2 to ameliorate cellular toxicity associated with virus replication. In a proof-of-concept experiment we screened a 273-compound library using replicon cells and identified three compounds as novel inhibitors of SARS-CoV-2 replication. Altogether, this work establishes a robust, cell-based system for genetic and functional analyses of SARS-CoV-2 replication and for the development of antiviral drugs. IMPORTANCE SARS-CoV-2 replicon systems that have been reported up to date were unsuccessful in deriving stable cell lines harboring non-cytopathic replicons. The transient expression of viral sgmRNA or a reporter gene makes it impractical for industry-scale screening of large compound libraries using these systems. Here, for the first time, we derived stable cell clones harboring the SARS-CoV-2 replicon. These clones may now be conveniently cultured in a standard BSL-2 laboratory for high throughput screen of compound libraries. Additionally, our stable replicon cells represent a new model system to study SARS-CoV-2 replication.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2 , Animais , Antivirais/farmacologia , Linhagem Celular , Células Clonais , Cricetinae , Avaliação Pré-Clínica de Medicamentos/métodos , RNA Viral , Replicon , SARS-CoV-2/efeitos dos fármacos , Replicação Viral
2.
J Proteome Res ; 21(10): 2341-2355, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36129246

RESUMO

Glycoproteomic analysis of three Chinese hamster ovary (CHO) suspension host cell lines (CHO-K1, CHO-S, and CHO-Pro5) commonly utilized in biopharmaceutical settings for recombinant protein production is reported. Intracellular and secreted glycoproteins were examined. We utilized an immobilization and chemoenzymatic strategy in our analysis. Glycoproteins or glycopeptides were first immobilized through reductive amination, and the sialyl moieties were amidated for protection. The desired N- or O-glycans and glycopeptides were released from the immobilization resin by enzymatic or chemical digestion. Glycopeptides were studied by Orbitrap Liquid chromatography-mass spectrometry (LC/MS), and the released glycans were analyzed by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Differences were detected in the relative abundances of N- and O-glycopeptide types, their resident and released glycans, and their glycoprotein complexity. Ontogeny analysis revealed key differences in features, such as general metabolic and biosynthetic pathways, including glycosylation systems, as well as distributions in cellular compartments. Host cell lines and subfraction differences were observed in both N- and O-glycan and glycoprotein pools. Differences were observed in sialyl and fucosyl glycan distributions. Key differences were also observed among glycoproteins that are problematic contaminants in recombinant antibody production. The differences revealed in this study should inform the choice of cell lines best suited for a particular bioproduction application.


Assuntos
Produtos Biológicos , Glicopeptídeos , Animais , Células CHO , Cricetinae , Cricetulus , Glicopeptídeos/análise , Glicoproteínas/metabolismo , Polissacarídeos/química , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33685917

RESUMO

Biochemical and structural analyses suggest that SARS-CoV-2 is well-adapted to infecting humans and the presence of four residues (PRRA) at the S1/S2 site within the spike (S) protein, which may lead to unexpected tissue or host tropism. Here we report that SARS-CoV-2 efficiently utilized ACE2 of 9 species to infect 293T cells. Similarly, pseudoviruses bearing S protein derived from either the bat RaTG13 or pangolin GX, two closely related animal coronaviruses, utilized ACE2 of a diverse range of animal species to gain entry. Removal of PRRA from SARS-CoV-2 S protein displayed distinct effects on pseudoviral entry into different cell types. Unexpectedly, insertion of PRRA into the RaTG13 S protein selectively abrogated the usage of horseshoe bat and pangolin ACE2 but enhanced the usage of mouse ACE2 by the relevant pseudovirus to enter cells. Together, our findings identified a previously unrecognized effect of the PRRA insert on SARS-CoV-2 and RaTG13 S proteins.ImportanceThe four-residue insert (PRRA) at the boundary between the S1and S2 subunits of SARS-CoV-2 has been widely recognized since day 1 for its role in SARS-CoV-2 S protein processing and activation. As this PRRA insert is unique to SARS-CoV-2 among group b betacoronaviruses, it is thought to affect the tissue and species tropism of SARS-CoV-2. We compared the usage of 10 ACE2 orthologs and found that the presence of PRRA not only affects the cellular tropism of SARS-CoV-2 but also modulates the usage of ACE2 orthologs by the closely related bat RaTG13 S protein. The binding of pseudovirions carrying RaTG13 S with a PRRA insert to mouse ACE2 was nearly 2-fold higher than that of pseudovirions carrying RaTG13 S.

4.
Anal Chem ; 92(16): 10946-10951, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32663021

RESUMO

O-Glycoprotein analysis has been historically challenging due, in part, to a dearth of available enzymes active in the release of O-glycans. Moreover, chemical releasing methods, such as ß-elimination/Michael addition, are not specific to O-glycan release and can also eliminate phosphoryl substitutions. Both of these events leave behind deaminated serine and threonine and thus can lead to ambiguous structural conclusions. Recently, the O-protease OpeRATOR, derived from intestinal bacteria and expressed in Escherichia coli, has become commercially available. The digestion of O-glycoprotein yields O-glycopeptides cleaved at the N-terminal end of serine and threonine, with O-glycan remaining intact. The enzyme has a broad substrate specificity and includes mammalian cores 1-8. However, OpeRATOR is not fully active toward sialylated glycoproteins, and it has been suggested that this acidic residue be removed prior to digestion, thus sacrificing structural information. In this study, we investigated the performance of OpeRATOR under a range of conditions, including buffer selection, varying pH, sialic acid modification, and digestion temperature, in order to optimize the enzymatic activity, with a special emphasis on sialylated glycosites. Conditions derived in this work facilitate the OpeRATOR digestion of fully sialylated O-glycopeptides that are mass tagged to identify the sialyl linkage, thus facilitating the analysis of these charged O-glycopeptides, which are often important in biological processes.


Assuntos
Endopeptidases/química , Glicopeptídeos/análise , Glicoproteínas/análise , Polissacarídeos/análise , Ácidos Siálicos/química , Animais , Sequência de Carboidratos , Bovinos , Escherichia coli/enzimologia , Etildimetilaminopropil Carbodi-Imida/química , Fetuínas/análise , Fetuínas/química , Glicoproteínas/química , Lactoferrina/análise , Lactoferrina/química , Mucinas/análise , Mucinas/química , Polissacarídeos/química , Triazóis/química
5.
Metab Eng ; 61: 301-314, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663509

RESUMO

In mammalian cells, N-glycans may include multiple N-acetyllactosamine (poly-LacNAc) units that can play roles in various cellular functions and properties of therapeutic recombinant proteins. Previous studies indicated that ß-1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and ß-1,4-galactotransferase 1 (B4GALT1) are two of the primary glycosyltransferases involved in generating LacNAc units. In the current study, knocking out sialyltransferase genes slightly enhanced the LacNAc content (≥4 repeats per glycan) on recombinant EPO protein. Next, the role of single and dual-overexpression of B3GNT2 and B4GALT1 was explored in recombinant EPO-expressing Chinese hamster ovary (CHO) cells. While overexpression of B4GALT1 slightly enhanced the levels of large glycans on recombinant EPO, overexpression of B3GNT2 in EPO-expressing CHO cells significantly decreased the recombinant EPO LacNAc content, resulting in N-glycans terminating primarily with GlcNAc structures, a limited number of Gals, and nearly undetectable sialylation, which was also observed in sialyltransferases knock-out-B3GNT2 overexpression cell lines. Considering the nature of the binding domain motifs present on B3GNT2, which evolved from ß1,3-galactosyltransferases, its overexpression may have competed and inhibited endogenous ß1,4-galactosyltransferases for exposed GlcNAc residues on the N-glycans, resulting in premature termination of many N-glycans at GlcNAc. Furthermore, B3GNT2 overexpression enhanced intracellular UDP-GlcNAc and CMP-Neu5Ac content while slightly lowering UDP-Gal content. The presence of a sink for UDP-GlcNAc in the form of B3GNT2 with no disposition may have also elevated the intracellular levels of this nucleotide as well as its downstream product, CMP-Neu5Ac. Furthermore, we were unable to overexpress B4GALT1 at either the transcriptional or translational levels following initial B3GNT2 expression. Expression of B3GNT2 following initial expression of B4GALT1 was also problematic in that transcriptional and translational analysis indicated the accumulation of truncated B3GNT2 missing a section of the B3GNT2 trans-Golgi lumen domain while transmembrane and cytoplasmic domains were present. Given that glycosylation is a very complex intra-network process, the addition of one or more recombinant glycosyltransferases may have an unexpected influence on the expression and activities of glycosyltransferases, which can disrupt the nucleotide sugar levels and lead to unexpected modifications of the resulting N-glycan patterns.


Assuntos
Metabolismo dos Carboidratos , Glicosiltransferases , Engenharia Metabólica , Polissacarídeos , Animais , Células CHO , Cricetulus , Glicosilação , Glicosiltransferases/biossíntese , Glicosiltransferases/genética , Polissacarídeos/biossíntese , Polissacarídeos/genética
6.
J Biol Chem ; 293(50): 19277-19289, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30315103

RESUMO

Influenza viruses cause contagious respiratory infections, resulting in significant economic burdens to communities. Production of influenza-specific Igs, specifically IgGs, is one of the major protective immune mechanisms against influenza viruses. In humans, N-glycosylation of IgGs plays a critical role in antigen binding and effector functions. The ferret is the most commonly used animal model for studying influenza pathogenesis, virus transmission, and vaccine development, but its IgG structure and functions remain largely undefined. Here we show that ferret IgGs are N-glycosylated and that their N-glycan structures are diverse. Using a comprehensive strategy based on MS and ultra-HPLC analyses in combination with exoglycosidase digestions, we assigned 42 N-glycan structures in ferret IgGs. We observed that N-glycans of ferret IgGs consist mainly of complex-type glycans, including some high-mannose and hybrid glycans, similar to those observed in human IgG. The complex-type glycans of ferret IgGs were primarily core-fucosylated. Furthermore, a fraction of N-glycans carried bisecting GlcNAc. Ferret IgGs also had a minor fraction of glycans carrying α2-6Neu5Ac(s). We noted that, unlike human IgG, ferret IgGs have αGal epitopes on some N-glycans. Interestingly, influenza A infection caused prominent changes in the N-glycans of ferret IgG, mainly because of an increase in bisecting GlcNAc and F1A2G0 and a corresponding decrease in F1A2G1. This suggests that the glycosylation of virus-specific IgG may play a role in its functionality. Our study highlights the need to further elucidate the structure-function relationships of IgGs in universal influenza vaccine development.


Assuntos
Furões , Imunoglobulina G/metabolismo , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/imunologia , Polissacarídeos/metabolismo , Acetilglucosamina/metabolismo , Animais , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Imunoglobulina G/química , Imunoglobulina G/imunologia , Masculino , Polissacarídeos/química
7.
BMC Med Genet ; 20(1): 138, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409279

RESUMO

BACKGROUND: Reference genes are often interchangeably called housekeeping genes due to 1) the essential cellular functions their proteins provide and 2) their constitutive expression across a range of normal and pathophysiological conditions. However, given the proliferative drive of malignant cells, many reference genes such as beta-actin (ACTB) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) which play critical roles in cell membrane organization and glycolysis, may be dysregulated in tumors versus their corresponding normal controls METHODS: Because Next Generation Sequencing (NGS) technology has several advantages over hybridization-based technologies, such as independent detection and quantitation of transcription levels, greater sensitivity, and increased dynamic range, we evaluated colorectal cancers (CRC) and their histologically normal tissue counterparts by NGS to evaluate the expression of 21 "classical" reference genes used as normalization standards for PCR based methods. Seventy-nine paired tissue samples of CRC and their patient matched healthy colonic tissues were subjected to NGS analysis of their mRNAs. RESULTS: We affirmed that 17 out of 21 classical reference genes had upregulated expression in tumors compared to normal colonic epithelial tissue and dramatically so in some cases. Indeed, tumors were distinguished from normal controls in both unsupervised hierarchical clustering analyses (HCA) and principal component analyses (PCA). We then identified 42 novel potential reference genes with minimal coefficients of variation (CV) across 79 CRC tumor pairs. Though largely consistently expressed across tumors and normal control tissues, a subset of high stage tumors (HSTs) as well as some normal tissue samples (HSNs) located adjacent to these HSTs demonstrated dysregulated expression, thus identifying a subset of tumors with a potentially distinct and aggressive biological profile. CONCLUSION: While classical CRC reference genes were found to be differentially expressed between tumors and normal controls, novel reference genes, identified via NGS, were more consistently expressed across malignant and normal colonic tissues. Nonetheless, a subset of HST had profound dysregulation of such genes as did many of the histologically normal tissues adjacent to such HSTs, indicating that the HSTs so distinguished may have unique biological properties and that their histologically normal tissues likely harbor a small population of microscopically undetected but metabolically active tumors.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Actinas/genética , Actinas/metabolismo , Biomarcadores Tumorais/genética , Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Perfilação da Expressão Gênica , Genes Essenciais/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , RNA Mensageiro , Análise de Sequência de RNA
8.
J Biol Chem ; 292(27): 11508-11530, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28522608

RESUMO

The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.


Assuntos
Comportamento Animal , Espinhas Dendríticas/metabolismo , Aprendizagem , Memória , Neuritos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Comportamento Social , Animais , Espinhas Dendríticas/patologia , Camundongos , Camundongos Knockout , Neuritos/patologia
9.
BMC Genomics ; 19(1): 326, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728062

RESUMO

BACKGROUND: Current library preparation protocols for Illumina HiSeq and MiSeq DNA sequencers require ≥2 nM initial library for subsequent loading of denatured cDNA onto flow cells. Such amounts are not always attainable from samples having a relatively low DNA or RNA input; or those for which a limited number of PCR amplification cycles is preferred (less PCR bias and/or more even coverage). A well-tested sub-nanomolar library preparation protocol for Illumina sequencers has however not been reported. The aim of this study is to provide a much needed working protocol for sub-nanomolar libraries to achieve outcomes as informative as those obtained with the higher library input (≥ 2 nM) recommended by Illumina's protocols. RESULTS: Extensive studies were conducted to validate a robust sub-nanomolar (initial library of 100 pM) protocol using PhiX DNA (as a control), genomic DNA (Bordetella bronchiseptica and microbial mock community B for 16S rRNA gene sequencing), messenger RNA, microRNA, and other small noncoding RNA samples. The utility of our protocol was further explored for PhiX library concentrations as low as 25 pM, which generated only slightly fewer than 50% of the reads achieved under the standard Illumina protocol starting with > 2 nM. CONCLUSIONS: A sub-nanomolar library preparation protocol (100 pM) could generate next generation sequencing (NGS) results as robust as the standard Illumina protocol. Following the sub-nanomolar protocol, libraries with initial concentrations as low as 25 pM could also be sequenced to yield satisfactory and reproducible sequencing results.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Bordetella bronchiseptica/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Genoma Bacteriano , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA
10.
Anal Chem ; 90(13): 8261-8269, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29936827

RESUMO

Glycosylation plays a critical role in the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Over 50% of mammalian cellular proteins are typically glycosylated; this modification is involved in a wide range of biological functions such as barrier formation against intestinal microbes and serves as signaling molecules for selectins and galectins in the innate immune system. N-linked glycosylation analysis has been greatly facilitated owing to a range of specific enzymes available for their release. However, system-wide analysis on O-linked glycosylation remains a challenge due to the lack of equivalent enzymes and the inherent structural heterogeneity of O-glycans. Although O-glycosidase can catalyze the removal of core 1 and core 3 O-linked disaccharides from glycoproteins, analysis of other types of O-glycans remains difficult, particularly when residing on glycopeptides. Here, we describe a novel chemoenzymatic approach driven by a newly available O-protease and solid phase platform. This method enables the assignment of O-glycosylated peptides, N-glycan profile, sialyl O-glycopeptides linkage, and mapping of heterogeneous O-glycosylation. For the first time, we can analyze intact O-glycopeptides generated by O-protease and enriched using a solid-phase platform. We establish the method on standard glycoproteins, confirming known O-glycosites with high accuracy and confidence, and reveal up to 8-fold more glycosites than previously reported with concomitant increased heterogeneity. This technique is further applied for analysis of Zika virus recombinant glycoproteins, revealing their dominant O-glycosites and setting a basis set of O-glycosylation tracts in these important viral antigens. Our approach can serve as a benchmark for the investigation of protein O-glycosylation in diseases and other biomedical contexts. This method should become an indispensable tool for investigations where O-glycosylation is central.


Assuntos
Oxigênio/metabolismo , Proteínas/metabolismo , Glicosilação , Modelos Moleculares , Mucinas/química , Mucinas/metabolismo , Conformação Proteica , Proteínas/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Zika virus/metabolismo
11.
J Biomed Sci ; 24(1): 59, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28822354

RESUMO

Three-dimensional (3D) brain organoids derived from human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), appear to recapitulate the brain's 3D cytoarchitectural arrangement and provide new opportunities to explore disease pathogenesis in the human brain. Human iPSC (hiPSC) reprogramming methods, combined with 3D brain organoid tools, may allow patient-derived organoids to serve as a preclinical platform to bridge the translational gap between animal models and human clinical trials. Studies using patient-derived brain organoids have already revealed novel insights into molecular and genetic mechanisms of certain complex human neurological disorders such as microcephaly, autism, and Alzheimer's disease. Furthermore, the combination of hiPSC technology and small-molecule high-throughput screening (HTS) facilitates the development of novel pharmacotherapeutic strategies, while transcriptome sequencing enables the transcriptional profiling of patient-derived brain organoids. Finally, the addition of CRISPR/Cas9 genome editing provides incredible potential for personalized cell replacement therapy with genetically corrected hiPSCs. This review describes the history and current state of 3D brain organoid differentiation strategies, a survey of applications of organoids towards studies of neurodevelopmental and neurodegenerative disorders, and the challenges associated with their use as in vitro models of neurological disorders.


Assuntos
Encéfalo/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/patologia , Organoides/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia
12.
Pharm Res ; 34(4): 765-779, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28150167

RESUMO

PURPOSE: Protein carbonylation is an irreversible modification of Lys, Arg, Thr and Pro amino acids under conditions of oxidative stress. Previous studies have reported specific carbonylated residues in purified recombinant albumins, albeit with a lack of agreement between the studies. Currently, structural factors that determine site-specific protein carbonylation are not well understood. METHODS: In this study, we utilized metal-catalyzed oxidizing conditions to generate carbonylation in recombinant human serum albumin (HSA) and granulocyte-colony stimulating factor (G-CSF), two proteins with distinct metal-binding abilities. To estimate predictability of HSA carbonylation sites, the same oxidative reaction was repeated based on the previously reported conditions. For G-CSF, oxidative conditions were gradually adjusted to achieve substantial levels of protein carbonylation. Corresponding accumulation of specific oxidized residues was identified and confirmed with high-resolution mass spectrometry. RESULTS: Our HSA dataset contained 55 carbonylated residues and showed a significant overlap with the previously published pooled data, indicating a certain level of carbonylation site specificity for albumins. Oxidation of G-CSF under multiple oxidative conditions consistently showed a highly specific carbonylation at position Pro45. We also detected a previously unreported, oxidation-induced cleavage site in G-CSF between His44 and Pro45, which might be attributed to a presence of a potential metal-binding site near residue Pro45. CONCLUSIONS: Our results show distinct patterns of protein carbonylation for HSA and G-CSF. Thus, specificity of protein carbonylation induced by metal-catalyzed oxidation is protein dependent and might be predicted by availability of transition metal binding site(s) within the protein.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Metais/química , Carbonilação Proteica , Albumina Sérica/química , Aminoácidos/química , Sítios de Ligação , Biocatálise , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química
14.
Cell Cycle ; 23(1): 43-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38263737

RESUMO

Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Carcinoma de Células Renais/patologia , Antígeno B7-H1 , Neoplasias Renais/patologia , Proteínas Quinases Ativadas por AMP , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
15.
Rapid Commun Mass Spectrom ; 27(1): 152-6, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23239328

RESUMO

RATIONALE: The hypothesis that dissociation energies can serve as a predictor of observability of b- and y-peaks is tested for seven hexapeptides. If the hypothesis holds true for large classes of peptides, one would be able to improve the scoring accuracy of peptide identification tools by excluding theoretical peaks that cannot be observed in practical product ion spectra due to various physical, chemical or thermodynamic considerations. METHODS: Product ion m/z spectra of hexapeptides AAAAAA, AAAFAA, AAAVAA, AAFAAA, AAVAAA, AAFFAA and AAVVAA have been acquired on a Finnigan LTQ XL mass spectrometer in the collision-induced dissociation (CID) activation mode on a grid of activation times 0.05 to 100 ms and normalized collision energy 10 to 35%. Dissociation energies were calculated for all fragmentation channels leading to b- and y-fragments at the TPSS/6-31G(d,p) level of the density functional theory. RESULTS: It was demonstrated that the m/z peaks observed in the product ion spectra correspond to the fragmentation channels with dissociation energies below a certain threshold value. However, there is no direct correlation between the most intense m/z peaks and the lowest dissociation energies. Using the dissociation energies, it was predicted that out of 63 theoretically possible peaks in the b- and y-series of the seven hexapeptides, 19 should not be observable in practical spectra. In the experiments, 24 peaks were not observed, including all 19 predicted. CONCLUSIONS: Dissociation energies alone are not sufficient for predicting ion intensity relationships in product ion m/z spectra. Nevertheless, the present data suggest that dissociation energies appear to be good predictors of observability of b- and y-peaks and potentially very useful for filtering theoretical peaks of each candidate peptide in peptide identification tools. Published 2012. This article is a US Government work and is in the public domain in the USA.


Assuntos
Espectrometria de Massas/métodos , Oligopeptídeos/química , Íons/química , Termodinâmica
16.
Elife ; 122023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735294

RESUMO

Newborns are unable to reach the adult-level humoral immune response partly due to the potent immunoregulatory role of IL-10. Increased IL-10 production by neonatal B cells has been attributed to the larger population of IL-10-producting CD43+ B-1 cells in neonates. Here, we show that neonatal mouse CD43- non-B-1 cells also produce substantial amounts of IL-10 following B cell antigen receptor (BCR) activation. In neonatal mouse CD43- non-B-1 cells, BCR engagement activated STAT5 under the control of phosphorylated forms of signaling molecules Syk, Btk, PKC, FAK, and Rac1. Neonatal STAT5 activation led to IL-6 production, which in turn was responsible for IL-10 production in an autocrine/paracrine fashion through the activation of STAT3. In addition to the increased IL-6 production in response to BCR stimulation, elevated expression of IL-6Rα expression in neonatal B cells rendered them highly susceptible to IL-6-mediated STAT3 phosphorylation and IL-10 production. Finally, IL-10 secreted from neonatal mouse CD43- non-B-1 cells was sufficient to inhibit TNF-α secretion by macrophages. Our results unveil a distinct mechanism of IL-6-dependent IL-10 production in BCR-stimulated neonatal CD19+CD43- B cells.


Assuntos
Interleucina-10 , Interleucina-6 , Animais , Camundongos , Animais Recém-Nascidos , Antígenos CD19/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Fosforilação , Receptores de Antígenos de Linfócitos B/metabolismo , Fator de Transcrição STAT5/metabolismo , Leucossialina/imunologia
17.
Life (Basel) ; 13(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240841

RESUMO

Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.

18.
Nat Commun ; 14(1): 6725, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872153

RESUMO

The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Epitopos de Linfócito T , Receptores de Antígenos de Linfócitos T/metabolismo , Nucleocapsídeo/metabolismo , Glicoproteína da Espícula de Coronavírus
19.
Rapid Commun Mass Spectrom ; 26(8): 915-20, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22396027

RESUMO

RATIONALE: Peptide identification reliability can be improved by excluding from analysis those m/z peaks of candidate peptides which cannot be observed in practice due to various physical, chemical or thermodynamic considerations. We propose using dissociation energies (as opposed to proton affinities) as a predictor of observability of different m/z peaks in spectra of short peptides. METHODS: Mass spectra of the tetrapeptides AAAA, AAFA, AAVA, AFAA, AVAA, AFFA, and AVVA were measured in the collision-induced dissociation (CID) activation mode on a grid of activation times 0.05 to 100 ms and normalized collision energy 10 to 35%. The lowest energy geometries and vibrational spectra were calculated for the precursor ions and their charged and neutral fragments using density functional theory (DFT) at the TPSS/6-31G(d,p) level. Dissociation energies were calculated for all fragmentation channels leading to b- or y-fragments. RESULTS: It is demonstrated that m/z peaks observed in the mass spectra correspond to the fragmentation channels with the lowest dissociation energies. Using 50 kcal/mol as the cut-off value of dissociation energy, it was predicted that 28 out of 42 possible peaks in the b- and y-series of the seven tetrapeptides can be observed in mass spectra. In the experiments, 26 b- or y-peaks were observed, all of which are among the 28 predicted ones. CONCLUSIONS: The use of dissociation energies generalizes the use of proton affinities for semi-quantitative predictions of relative intensities of different m/z peaks of short peptides. Further advances in this direction will pave the way for reliable quantitative predictions and, hence, for a significant improvement in robustness and accuracy of peptide and protein identification tools.


Assuntos
Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Peptídeos/química , Cinética
20.
Proc Natl Acad Sci U S A ; 106(52): 22468-73, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018732

RESUMO

Sigma-1 receptors (Sig-1Rs) are endoplasmic reticulum (ER)-resident proteins known to be involved in learning and memory. Dendritic spines in hippocampal neurons play important roles in neuroplasticity and learning and memory. This study tested the hypothesis that Sig-1Rs might regulate denritic spine formation in hippocampal neurons and examined potential mechanisms therein. In rat hippocampal primary neurons, the knockdown of Sig-1Rs by siRNAs causes a deficit in the formation of dendritic spines that is unrelated to ER Ca(2+) signaling or apoptosis, but correlates with the mitochondrial permeability transition and cytochrome c release, followed by caspase-3 activation, Tiam1 cleavage, and a reduction in Rac1.GTP. Sig-1R-knockdown neurons contain higher levels of free radicals when compared to control neurons. The activation of superoxide dismutase or the application of the hydroxyl-free radical scavenger N-acetyl cysteine (NAC) to the Sig-1R-knockdown neurons rescues dendritic spines and mitochondria from the deficits caused by Sig-1R siRNA. Further, the caspase-3-resistant TIAM1 construct C1199DN, a stable guanine exchange factor able to constitutively activate Rac1 in the form of Rac1.GTP, also reverses the siRNA-induced dendritic spine deficits. In addition, constitutively active Rac1.GTP reverses this deficit. These results implicate Sig-1Rs as endogenous regulators of hippopcampal dendritic spine formation and suggest a free radical-sensitive ER-mitochondrion-Rac1.GTP pathway in the regulation of dendritic spine formation in the hippocampus.


Assuntos
Espinhas Dendríticas/fisiologia , Guanosina Trifosfato/metabolismo , Hipocampo/fisiologia , Receptores sigma/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Apoptose , Sinalização do Cálcio , Caspase 3/metabolismo , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Sequestradores de Radicais Livres/farmacologia , Radicais Livres/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Aprendizagem/fisiologia , Memória/fisiologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Plasticidade Neuronal/fisiologia , RNA Interferente Pequeno/genética , Ratos , Receptores sigma/antagonistas & inibidores , Receptores sigma/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA