Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Small ; 20(15): e2307284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994259

RESUMO

High-entropy oxides (HEOs) are promising anode materials for lithium-ion batteries (LIBs), owing to their stable crystal structure, superionic conductivity, and high capacity. In this study, the (Cr, Mn, Fe, Co, and Ni)3O4 HEO via solid-state reaction is prepared. To improve the synthetic efficiency, it is necessary to understand the formation mechanism. Therefore, a high-resolution transmission electron microscopy (HRTEM) is used to record information during calcination at increasing temperature. The overall formation process included MnO2 and NiO aggregation at 500 °C, followed by (Mn, and Ni)3O4 combined with Co3O4 at 600 °C to form (Mn, Co, and Ni)3O4. At higher temperatures, Fe2O3 and Cr2O3 sequentially combined with (Mn, Co, and Ni)3O4 and formed the (Cr, Mn, Fe, Co, Ni)3O4 at 900 °C. In addition, the valence-state-changing mechanisms and ion arrangements of (Cr, Mn, Fe, Co, and Ni)3O4 are determined using electron energy loss spectroscopy (EELS) and extended X-ray absorption fine structure (EXAFS). This study successfully revealed the formation of HEO at atomic scale. The results provide valuable insights for improving the manufacturing process of (Cr, Mn, Fe, Co, and Ni)3O4 HEOs, which is expected to play a vital role in the development of anode materials for next-generation LIBs.

2.
World J Surg ; 47(4): 1003-1017, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36633646

RESUMO

INTRODUCTION: The potential association between severe postoperative complications (SPC) and the oncological outcomes of esophageal squamous cell carcinoma (ESCC) patients according to the different Naples Prognostic Score (NPS) of the inflammatory nutritional status after minimally invasive esophagectomy (MIE) is unclear. METHODS: Kaplan-Meier survival analysis was used to evaluate overall survival (OS) and disease-free survival (DFS) between with or without SPC (Clavien-Dindo grade ≥ III) in low NPS status (NPS = 0 or 1) and high NPS status (NPS = 2 or 3 or 4) patients. Cox multivariable analysis was carried out to analyze the various independent factors of OS and DFS, and a nomogram based on SPC was established. RESULTS: A total of 20.7% (125/604) ESCC patients developed SPC after MIE. Patients with SPC exhibited poor 5-year OS and DFS compared to those without SPC (all P < 0.001). Further analysis revealed that SPC significantly reduced OS and DFS in patients with high NPS status (all P < 0.001) but had little effect on the prognosis of patients with low NPS status (all P > 0.05). Multivariable Cox analysis revealed that SPC could be an independent influence indicator for OS and DFS in patients with high NPS status. Therefore, a novel nomogram combining SPC and tumor-node-metastasis (TNM) staging has been developed, which was found to be relatively more accurate in predicting OS and DFS than TNM staging alone. CONCLUSION: Severe complications can adversely affect the long-term oncological outcome of ESCC patients with high systemic inflammatory response and malnutrition after MIE.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/cirurgia , Neoplasias Esofágicas/patologia , Estado Nutricional , Esofagectomia/efeitos adversos , Prognóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
3.
Nano Lett ; 22(22): 9071-9076, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342418

RESUMO

Surface diffusion is intimately correlated with crystal orientation and surface structure. Fast surface diffusion accelerates phase transformation and structural evolution of materials. Here, through in situ transmission electron microscopy observation, we show that a copper nanowire with dense nanoscale coherent twin-boundary (CTB) defects evolves into a zigzag configuration under electric-current driven surface diffusion. The hindrance at the CTB-intercepted concave triple junctions decreases the effective surface diffusivity by almost 1 order of magnitude. The energy barriers for atomic migration at the concave junctions and different faceted surfaces are computed using density functional theory. We proposed that such a stable zigzag surface is shaped not only by the high-diffusivity facets but also by the stalled atomic diffusion at the concave junctions. This finding provides a defect-engineering route to develop robust interconnect materials against electromigration-induced failures for nanoelectronic devices.

4.
Nano Lett ; 22(19): 7944-7951, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129470

RESUMO

In this study, facile salt-assisted chemical vapor deposition (CVD) was used to synthesize ultrathin non-van der Waals chromium sulfide (Cr2S3) with a thickness of ∼1.9 nm. The structural transformation of as-grown Cr2S3 was studied using advanced in situ heating techniques combined with transmission electron microscopy (TEM). Two-dimensional (2D) and quasi-one-dimensional (1D) samples were fabricated to investigate the connection between specific planes and the dynamic behavior of the structural variation. The rearrangement of atoms during the phase transition was driven by the loss of sulfur atoms at elevated temperatures, resulting in increased free energy. A decrease in the ratio of the (001) plane led to an overall increase in surface energy, thus lowering the critical phase transition temperature. Our study provides detailed insight into the mechanism of structural transformation and the critical factors governing transition temperature, thus paving the way for future studies on intriguing Cr-S compounds.

5.
Small ; 18(7): e2106411, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34995002

RESUMO

2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration-corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing.

6.
Small ; 18(51): e2205306, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328712

RESUMO

Recently, perovskite (PV) oxides with ABO3 structures have attracted considerable interest from scientists owing to their functionality. In this study, CaFeOx is introduced to reveal the resistive switching properties and mechanism of oxygen vacancy transition in PV and brownmillerite (BM) structures. BM-CaFeO2.5 is grown on an Nb-STO conductive substrate epitaxially. CaFeOx exhibits excellent endurance and reliability. In addition, the CaFeOx also demonstrates an electroforming-free characteristic and multilevel resistance properties. To construct the switching mechanism, high-resolution transmission electron microscopy is used to observe the topotactic phase change in CaFeOx . In addition, scanning TEM and electron energy loss spectroscopy show the structural evolution and valence state variation of CaFeOx after the switching behavior. This study not only reveals the switching mechanism of CaFeOx , but also provides a PV oxide option for the dielectric material in resistive random-access memory (RRAM) devices.

7.
Nano Lett ; 20(3): 1510-1516, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725308

RESUMO

Crystalline Mo5O14 exhibits distinctive structural features such as tunnel structure and pseudolamellar arrangement according to the ideal model. However, the spatial resolution of the conventional technique of transmission electron microscopy (TEM) is insufficient to distinguish the actual positions of atoms. In this work, we aimed to systematically analyze and identify the Mo5O14 nanowires fabricated by the chemical vapor deposition (CVD) process. Utilizing high-angle annular dark-field (HAADF), annular bright-field (ABF), and enhanced annular bright-field (E-ABF) within the scanning transmission electron microscope (STEM) mode reveals the structural features at the atomic scale. In addition, the ultrahigh resolution images have confirmed the crystallographic insights in [001] growth direction for the Mo5O14 nanowires with a tunnel structure throughout the nanowire. The cross-sectional images show the unique close-packed plane and atomic arrangement with a network of MoO6 octahedra and MoO7 pentagonal bipyramids. These results are consistent with the theoretical atomic arrangement, supporting the realization of Mo5O14-type catalysts used in the selective oxidation process and battery applications.

8.
Small ; 16(3): e1905516, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31825564

RESUMO

Layered MoS2 is a prospective candidate for use in energy harvesting, valleytronics, and nanoelectronics. Its properties strongly related to its stacking configuration and the number of layers. Due to its atomically thin nature, understanding the atomic-level and structural modifications of 2D transition metal dichalcogenides is still underdeveloped, particularly the spatial control and selective precision. Therefore, the development of nanofabrication techniques is essential. Here, an atomic-scale approach used to sculpt 2D few-layer MoS2 into lateral heterojunctions via in situ scanning/transmission electron microscopy (STEM/TEM) is developed. The dynamic evolution is tracked using ultrafast and high-resolution filming equipment. The assembly behaviors inherent to few-layer 2D-materials are observed during the process and included the following: scrolling, folding, etching, and restructuring. Atomic resolution STEM is employed to identify the layer variation and stacking sequence for this new 2D-architecture. Subsequent energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy analyses are performed to corroborate the elemental distribution. This sculpting technique that is established allows for the formation of sub-10 nm features, produces diverse nanostructures, and preserves the crystallinity of the material. The lateral heterointerfaces created in this study also pave the way for the design of quantum-relevant geometries, flexible optoelectronics, and energy storage devices.

9.
Anal Chem ; 91(15): 9665-9672, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243950

RESUMO

Metal oxides have attracted substantial attention over the years and are commonly used in the semiconductor industry because of their excellent physical and chemical properties. Among the various metal oxides, cuprous oxide (Cu2O) is regarded as a promising material. It is inexpensive, earth-abundant, and nontoxic; therefore, it can be used in catalysis, sensors, solar cells, and p-type semiconductors. However, the redox reaction of Cu2O is still uncertain. The size, morphology, and structure of Cu2O strongly influence its properties. In this work, we developed a new synthesis method of Cu2O that involves reducing the precursor by an electron beam without reducing agent. The growth process of Cu2O nanocubes was observed via in situ liquid cell transmission electron microscopy (in situ LCTEM). The nucleation kinetics, oscillating growth behavior, and redox reaction of the Cu2O nanocubes in the liquid phase were systematically studied. Cu2O exhibited a round shape at the beginning and transformed into a cubic shape afterward. Interestingly, the Cu2O nanocubes grew clearly under long-term observation; however, their diameters increased and fluctuated during the short-term observation. The electron beam not only stimulated the solution to reduce the nanocubes but also caused electron radiation effect to the nanocubes. During the Cu2O growth and dissolution, the cubic shape evolved with specific planes in the {100} family. Our direct observation sheds light on the preparation of Cu2O by a reduction method, extending the study of reaction kinetics and providing a new way to synthesize metal oxides.

10.
Small ; 15(33): e1900865, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31264786

RESUMO

Electrical contacts often dominate charge transport properties at the nanoscale because of considerable differences in nanoelectronic device interfaces arising from unique geometric and electrostatic features. Transistors with a tunable Schottky barrier between the metal and semiconductor interface might simplify circuit design. Here, germanium nanowire (Ge NW) transistors with Cu3 Ge as source/drain contacts formed by both buffered oxide etching treatments and rapid thermal annealing are reported. The transistors based on this Cu3 Ge/Ge/Cu3 Ge heterostructure show ambipolar transistor behavior with a large on/off current ratio of more than 105 and 103 for the hole and electron regimes at room temperature, respectively. Investigations of temperature-dependent transport properties and low-frequency current fluctuations reveal that the tunable effective Schottky barriers of the Ge NW transistors accounted for the ambipolar behaviors. It is further shown that this ambipolarity can be used to realize binary-signal and data-storage functions, which greatly simplify circuit design compared with conventional technologies.

11.
Nano Lett ; 18(9): 6064-6070, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130112

RESUMO

Transition metal oxide nanowires have attracted extensive attention because of their physical characteristics. Among them, ZnO nanowires have great potential. Due to the multifunctional properties of ZnO, devices built using ZnO-based heterostructures always perform well. In this study, interesting diffusion behavior between ZnO nanowires and Fe metal was observed by using in situ transmission electron microscopy. ZnO nanowires and Fe metal were annealed under ultrahigh vacuum (UHV) conditions at 800 K. By controlling the annealing time for the solid-state diffusion, porous Fe3O4 and unique ZnO/porous Fe3O4 nanowire heterostructures were formed. As-formed porous Fe3O4 nanowires with voids can be divided into two types by appearance: plate-like voids and zigzag-like hollow voids. From high-resolution transmission electron microscopy (HRTEM) images and fast Fourier transform (FFT) diffraction patterns, we found that plate-like voids formed along the {111} plane, which was the close-packed plane of Fe3O4, and that zigzag-like hollow voids formed along the {111}/{022} planes. Moreover, a transition region existed during diffusion, with a parallel relationship found between the Fe3O4 crystal with plate-like voids and the ZnO crystal. A sharp interface was determined to exist between the Fe3O4 crystal with zigzag-like hollow voids and ZnO. These oriented porous Fe3O4/ZnO axial nanowire heterostructures exhibited a unique appearance and interesting formation behavior. Furthermore, the structures had a high surface-area-to-volume ratio, which is promising for sensing applications.

12.
Nano Lett ; 18(2): 778-784, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29369633

RESUMO

The fabrication and placement of high purity nanometals, such as one-dimensional copper (Cu) nanowires, for interconnection in integrated devices have been among the most important technological developments in recent years. Structural stability and oxidation prevention have been the key issues, and the defect control in Cu nanowire growth has been found to be important. Here, we report the synthesis of defect-free single-crystalline Cu nanowires by controlling the surface-assisted heterogeneous nucleation of Cu atomic layering on the graphite-like loop of an amorphous carbon (a-C) lacey film surface. Without a metal-catalyst or induced defects, the high quality Cu nanowires formed with high aspect ratio and high growth rate of 578 nm/s. The dynamic study of the growth of heterogeneous nanowires was conducted in situ with a high-resolution transmission electron microscope. The study illuminates the new mechanism by heterogeneous nucleation control and laying the groundwork for better understanding of heterosurface-assisted nucleation of defect-free Cu nanowire on a-C lacey film.

13.
Nano Lett ; 18(10): 6427-6433, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30256644

RESUMO

Formation mechanisms of dendrite structures have been extensively explored theoretically, and many theoretical predictions have been validated for micro- or macroscale dendrites. However, it is challenging to determine whether classical dendrite growth theories are applicable at the nanoscale due to the lack of detailed information on the nanodendrite growth dynamics. Here, we study iron oxide nanodendrite formation using liquid cell transmission electron microscopy (TEM). We observe "seaweed"-like iron oxide nanodendrites growing predominantly in two dimensions on the membrane of a liquid cell. By tracking the trajectories of their morphology development with high spatial and temporal resolution, it is possible to explore the relationship between the tip curvature and growth rate, tip splitting mechanisms, and the effects of precursor diffusion and depletion on the morphology evolution. We show that the growth of iron oxide nanodendrites is remarkably consistent with the existing theoretical predictions on dendritic morphology evolution during growth, despite occurring at the nanoscale.

14.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205879

RESUMO

Metal/metal oxides have attracted extensive research interest because of their combination of functional properties and compatibility with industry. Diffusion and thermal reliability have become essential issues that require detailed study to develop atomic-scaled functional devices. In this work, the diffusional reaction behavior that transforms piezoelectric ZnO into magnetic Fe3 O4 is investigated at the atomic scale. The growth kinetics of metal oxides are systematically studied through macro- and microanalyses. The growth rates are evaluated by morphology changes, which determine whether the growth behavior was a diffusion- or reaction-controlled process. Furthermore, atom attachment on the kink step is observed at the atomic scale, which has important implications for the thermodynamics of functional metal oxides. Faster growth planes simultaneously decrease, which result in the predominance of low surface energy planes. These results directly reveal the atomic formation process of metal oxide via solid-state diffusion. In addition, the nanofabricated method provides a novel approach to investigate metal oxide evolution and sheds light on diffusional reaction behavior. More importantly, the results and phenomena of this study provide considerable inspiration to enhance the material stability and reliability of metal/oxide-based devices.

15.
Small ; 14(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205791

RESUMO

The crossbar structure of resistive random access memory (RRAM) is the most promising technology for the development of ultrahigh-density devices for future nonvolatile memory. However, only a few studies have focused on the switching phenomenon of crossbar RRAM in detail. The main purpose of this study is to understand the formation and disruption of the conductive filament occurring at the crossbar center by real-time transmission electron microscope observation. Core-shell Ni/NiO nanowires are utilized to form a cross-structure, which restrict the position of the conductive filament to the crosscenter. A significant morphological change can be observed near the crossbar center, which results from the out-diffusion and backfill of oxygen ions. Energy dispersive spectroscopy and electron energy loss spectroscopy demonstrate that the movement of the oxygen ions leads to the evolution of the conductive filament, followed by redox reactions. Moreover, the distinct reliability of the crossbar device is measured via ex situ experiments. In this work, the switching mechanism of the crossbar core-shell nanowire structure is beneficial to overcome the problem of nanoscale minimization. The experimental method shows high potential to fabricate high-density RRAM devices, which can be applied to 3D stacked package technology and neuromorphic computing systems.

16.
Anal Chem ; 89(18): 9671-9675, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28805052

RESUMO

Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation-delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO2 layer caused structural defects on the CNTs surface that could allow penetration of Li+ and Mn4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.

17.
Small ; 13(15)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165195

RESUMO

The Forming phenomenon is observed via in situ transmission electron microscopy in the Ag/Ta2 O5 /Pt system. The device is switched to a low-resistance state as the dual filament is connected to the electrodes. The results of energy dispersive spectrometer and electron energy loss spectroscopy analyses demonstrate that the filament is composed by a stack of oxygen vacancies and Ag metal.

18.
Nano Lett ; 16(2): 1086-91, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26789624

RESUMO

Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated ß-Pt2Si/Si/θ-Ni2Si, ß-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

19.
Anal Chem ; 87(11): 5584-8, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25942426

RESUMO

Recently, in situ transmission electron microscopy (TEM) has provided a route to analyze structural characterization and chemical evolution with its powerful and unique applications. In this paper, we disclose the detailed phenomenon of sublimation on the atomic scale. In2Se3/In2O3 nanowires were synthesized via the vapor-liquid-solid mechanism and studied in an ultra-high-vacuum (UHV) TEM at high temperature in real time. During in situ observation of the sublimation process of the nanowires, the evolution and reconstruction of the exposed In2Se3 surface progressed in different manners with time. The surface structure was decomposed by mass-desorption and stepwise-migration processes, which are also energetically favored processes in the ab initio calculation. This study developed a new concept and will be essential in the development of atomic kinetics.

20.
Nano Lett ; 14(5): 2759-63, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24742102

RESUMO

One dimensional metal oxide nanostructures have attracted much attention owing to their fascinating functional properties. Among them, piezoelectricity and photocatalysts along with their related materials have stirred significant interests and widespread studies in recent years. In this work, we successfully transformed piezoelectric ZnO into photocatalytic TiO2 and formed TiO2/ZnO axial heterostructure nanowires with flat interfaces by solid to solid cationic exchange reactions in high vacuum (approximately 10(-8) Torr) transmission electron microscope (TEM). Kinetic behavior of the single crystalline TiO2 was systematically analyzed. The nanoscale growth rate of TiO2 has been measured using in situ TEM videos. On the basis of the rate, we can control the dimensions of the axial-nanoheterostructure. In addition, the unique Pt/ ZnO / TiO2/ ZnO /Pt heterostructures with complementary resistive switching (CRS) characteristics were designed to solve the important issue of sneak-peak current. The resistive switching behavior was attributed to the migration of oxygen and TiO2 layer served as reservoir, which was confirmed by energy dispersive spectrometry (EDS) analysis. This study not only supplied a distinct method to explore the transformation mechanisms but also exhibited the potential application of ZnO/TiO2 heterostructure in nanoscale crossbar array resistive random-access memory (RRAM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA