Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808618

RESUMO

Bursaphelenchus xylophilus is the pathogen of pine wilt disease, which can devastate the pine forest ecosystem. Usually, plant cells generate reactive oxygen species (ROS) as a defensive substance or signalling molecules to resist the infection of nematodes. However, little is known about how B. xylophilus effectors mediate the plant ROS metabolism. Here, we identified a pioneer B. xylophilus Prx3-interacting effector 1 (BxPIE1) expressed in the dorsal gland cells and the intestine. Silencing of the BxPIE1 gene resulted in reduced nematode reproduction and a delay in disease progression during parasitic stages, with the upregulation of pathogenesis-related (PR) genes PtPR-3 (class Ⅳ chitinase) and PtPR-9 (peroxidase). The protein-protein interaction assays further demonstrated that BxPIE1 interacts with a Pinus thunbergii class III peroxidase (PtPrx3), which produces H2O2 under biotic stress. The expression of BxPIE1 and PtPrx3 was upregulated during the infection stage. Furthermore, BxPIE1 effectively inhibited H2O2 generating from class III peroxidase and ascorbate can recover the virulence of siBxPIE1-treated B. xylophilus by scavenging H2O2. Taken together, BxPIE1 is an important virulence factor, revealing a novel mechanism utilized by nematodes to suppress plant immunity.

2.
Phytopathology ; 113(3): 539-548, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36976314

RESUMO

Pine wilt disease, caused by Bursaphelenchus xylophilus, results in tremendous economic loss in conifer production every year. To disturb the host immune responses, plant pathogens secrete a mass of effector proteins that facilitate the infection process. Although several effectors of B. xylophilus have been identified, detailed mechanisms of their functions remain largely unexplored. Here, we reveal two novel B. xylophilus Kunitz effectors, named BxKU1 and BxKU2, using different infection strategies to suppress immunity in Pinus thunbergii. We found that both BxKU1 and BxKU2 could suppress PsXEG1-triggered cell death and were present in the nucleus and cytoplasm in Nicotiana benthamiana. However, they had different three-dimensional structures and various expression patterns in B. xylophilus infection. In situ hybridization experiments showed that BxKU2 was expressed in the esophageal glands and ovaries, whereas BxKU1 was only expressed in the esophageal glands of females. We further confirmed that the morbidity was significantly decreased in P. thunbergii infected with B. xylophilus when BxKU1 and BxKU2 were silenced. The silenced BxKU2I, but not BxKU1, affected the reproduction and feeding rate of B. xylophilus. Moreover, BxKU1 and BxKU2 targeted to different proteins in P. thunbergii, but they all interacted with thaumatin-like protein 4 (TLP4) according to yeast two-hybrid screening. Collectively, our study showed that B. xylophilus could incorporate two Kunitz effectors in a multilayer strategy to counter immune response in P. thunbergii, which could help us better understand the interaction between plant and B. xylophilus.


Assuntos
Pinus , Tylenchida , Animais , Xylophilus , Doenças das Plantas
3.
BMC Plant Biol ; 22(1): 216, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473472

RESUMO

BACKGROUND: Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD) that has caused enormous ecological and economic losses in China. The mechanism in the interaction between nematodes and pine remains unclear. Plant parasitic nematodes (PPNs) secrete effectors into host plant tissues. However, it is poorly studied that role of effector in the infection of pine wood nematode (PWN). RESULTS: We cloned, characterized and functionally validated the B. xylophilus effector BxML1, containing an MD-2-related lipid-recognition (ML) domain. This protein inhibits immune responses triggered by the molecular pattern BxCDP1 of B. xylophilus. An insitu hybridization assay demonstrated that BxML1 was expressed mainly in the dorsal glands and intestine of B. xylophilus. Subcellular localization analysis showed the presence of BxML1 in the cytoplasm and nucleus. Furthermore, number of B. xylophilus and morbidity of pine were significantly reduced in Pinus thunbergii infected with B. xylophilus when BxML was silenced. Using yeast two-hybrid (Y2H) and coimmunoprecipitation (CoIP) assays, we found that the BxML1 interacts with cyclophilin protein PtCyP1 in P. thunbergii. CONCLUSIONS: This study illustrated that BxML1 plays a critical role in the B. xylophilus-plant interaction and virulence of B. xylophilus.


Assuntos
Pinus , Tylenchida , Animais , Ciclofilinas/genética , Pinus/parasitologia , Virulência , Xylophilus
4.
Phytopathology ; 112(9): 1867-1876, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35263163

RESUMO

Phytophthora cinnamomi is an important plant pathogen that is widely distributed worldwide and has caused serious ecological damage and significant economic losses in forests and plantations in many countries. The use of plant growth-promoting rhizobacteria is an effective and environmentally friendly strategy for controlling diseases caused by P. cinnamomi. In this study, we investigated the antagonistic mechanism of Pseudomonas aurantiaca ST-TJ4 against P. cinnamomi through different antagonistic approaches, observations of mycelial morphology, study of mycelial metabolism, and identification of antagonistic substances. The results showed that Pseudomonas aurantiaca ST-TJ4 was able to significantly inhibit mycelial growth, causing mycelial deformation and disrupting internal cell structures. Additionally, pathogen cell membranes were damaged by ST-TJ4, and mycelial cell content synthesis was disrupted. Ultraperformance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry analyses showed that phenazine compounds and 2-undecanone were the main antagonistic components. The ammonia produced by the ST-TJ4 strain also contributed to the inhibition of the growth of P. cinnamomi. In conclusion, our results confirm that Pseudomonas aurantiaca ST-TJ4 can inhibit P. cinnamomi through multiple mechanisms and can be used as a biological control agent for various plant diseases caused by P. cinnamomi.


Assuntos
Phytophthora , Compostos Orgânicos Voláteis , Fenazinas/metabolismo , Fenazinas/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
5.
Phytopathology ; 112(6): 1226-1234, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35476587

RESUMO

Ectomycorrhizal fungi (EMFs) form symbioses with plant roots to promote nutrient uptake by plants but it is controversial as to whether they induce disease resistance in plants. Here, we inoculated pine seedlings with Sphaeropsis sapinea, which was presymbiotic with the EMF Hymenochaete sp. Rl, and the mycorrhizal helper bacterium (MHB) Bacillus pumilus HR10, which promotes the formation of Pinus thunbergia-Hymenochaete sp. Rl mycorrhizae. The results showed that inoculation with Hymenochaete sp. Rl, B. pumilus HR10, and the consortium significantly reduced pine shoot blight disease caused by S. sapinea. After inoculation with pathogenic fungi, callose deposition was significantly increased in needles of pine seedlings inoculated with Hymenochaete sp. Rl, B. pumilus HR10, and the consortium, together with an increase in enzymatic and nonenzymatic systemic antioxidant activity as well as early priming for upregulated expression of PR3 and PR5 genes. Our findings suggest that ectomycorrhizal colonization enhances the resistance of pine seedlings to Sphaeropsis shoot blight by triggering a systemic defense response and that interactions between EMFs and MHBs are essential for mycorrhizal-induced disease resistance.


Assuntos
Bacillus pumilus , Basidiomycota , Micorrizas , Pinus , Bactérias , Basidiomycota/fisiologia , Resistência à Doença , Micorrizas/fisiologia , Pinus/microbiologia , Doenças das Plantas , Raízes de Plantas/microbiologia , Plântula/microbiologia
6.
Plant Dis ; 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35822888

RESUMO

Cornus officinalis Sieb. et Zucc., belonging to the family Cornaceae, is often used as an ornamental plant and is widely distributed in Shandong, Jiangsu, and Zhejiang provinces and other places in China. Since 2020, a new disease with high incidence has been found in Xuanwu Lake Park (32°04'34.53″N 118°48'42.06″E) in Nanjing, Jiangsu Province, China. The symptoms began as small brown lesions formed along the leaf tips, which gradually expanded and became dark brown with a light brown border. A survey of C. officinalis trees in Xuanwu Lake Park showed that approximately 90% of thirty trees were infected, which decreased the ornamental value of C. officinalis. Pieces of leaf tissue (3 to 4 mm²) from the lesion margins were surface sterilized with 75% ethanol for 30 s and 1% NaClO for 90 s. Subsequently, the tissues were rinsed with sterile H2O, placed on potato dextrose agar (PDA) medium and incubated at 25℃ for 5 days. The same fungus was isolated in 90% of the tissues. Pure cultures were obtained by monosporic isolation. A representative isolate, SZY 2-2, was used for morphological and molecular characterization. The colonies were initially white, gradually turning gray green to black with copious gray aerial mycelium after 1 week in culture. Conidia were one-celled, hyaline, smooth, and fusoid to ellipsoid. Conidia measurements were 23.6±1.9×7.2±0.56 µm (n = 50). The morphology of SZY 2-2 matched the description of Botryosphaeria dothidea (Slippers et al. 2004). To verify species identity, the partial sequences of the internal transcribed spacer (ITS) region, translation elongation factor 1 alpha (EF1-a) gene, and beta-tubulin gene (TUB), were amplified from isolate SZY 2-2 with primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Koho 1999), and ßt2a/ßt2b (Glass and Donaldson 1995), respectively. The sequences were deposited in GenBank (ON171471 for ITS, ON185540 for EF1-a, and ON185541 for TUB). A BLAST search of GenBank showed that ITS, EF1-a and TUB sequences of SZY 2-2 were similar to those of B. dothidea MN633360 (identity=517/517 bp; 100%), MK783294 (identity=299/299 bp; 100%), and KF005081 (identity=461/461 bp; 100%), respectively. The morphological and molecular results identified the isolate as B. dothidea (Zhai et al. 2014). To fulfill Koch's postulates, a pathogenicity test was conducted using three C. officinalis plants. Five leaves from each tree were wounded and inoculated with mycelial plugs (about 4 mm in diameter) of B. dothidea from a 5-day-old culture grown on PDA, and inoculation with sterile PDA plugs on different leaves of the same tree served as negative controls. The leaves were enclosed in plastic bag along with the branches with a wet cotton ball inside. Sterile H2O2 was sprayed into the plastic bags to keep moisture conditions.Five days later, all inoculated points showed lesions similar to those previously observed in the field, whereas controls were asymptomatic. The pathogen was successfully reisolated from the inoculated symptomatic parts on PDA and had morphology as characterized before, thus fulfilling Koch's postulates. B. dothidea is known as a ubiquitous fungus and operates as both an endophyte and an opportunistic pathogen of trees (Slippers and Wingfield 2007, Zhao et al 2020). Stress factors that predispose trees to disease expression by B. dothidea include drought, defoliation (Theodore et al. 1997), competition, and physical damage (Slippers and Wingfield 2007). This is consistent with the occurrence of the disease in September and association of B. dothidea with the presence of wounds. More investigation is needed to determine the relationship between possible endophytic growth of B. dothidea on C. officinalis and the leaf blight found in Jiangsu Province.

7.
Plant Dis ; 106(8): 2172-2181, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35077229

RESUMO

Liriodendron chinense × tulipifera black spot is a newly discovered disease that causes yellowing and early shedding of leaves, affecting the growth of Liriodendron trees, and significantly reducing their ornamental value as a garden species. The pathogen responsible for this disease, and how it can be prevented and controlled, are not clear. In this study, the occurrence of this disease was first investigated according to Koch's postulates, and the primary pathogens causing Liriodendron black spot were determined to be Colletotrichum gloeosporioides and Alternaria alternata. Biocontrol strains antagonistic to these two pathogens were then screened from the leaf microorganisms of L. chinense × tulipifera, and a preliminary investigation of the biological control of Liriodendron black spot was performed. Through the screening of antagonistic microorganisms on the leaf surface of L. chinense × tulipifera, the strain Trichoderma koningiopsis T2, which displayed strong antagonism against C. gloeosporioides and A. alternata, was obtained. The T2 strain could inhibit the growth of the two pathogens via three mechanisms: hyperparasitism, volatile and nonvolatile metabolite production, and environmental acidification. The biocontrol experiments in the greenhouse and field showed that initial spraying with a T. koningiopsis T2 spore suspension followed by the two pathogens resulted in the lowest disease incidence. These results confirmed the black spot pathogens of L. chinense × tulipifera, clarified the antagonistic mechanism of T. koningiopsis T2 against the two pathogens, and provided a theoretical basis and technical support for the biological control of the disease.


Assuntos
Agentes de Controle Biológico , Liriodendron , Doenças das Plantas , Trichoderma , Liriodendron/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Árvores , Trichoderma/fisiologia
8.
Plant Dis ; 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210335

RESUMO

Pseudocydonia sinensis is a Chinese ornamental plant with great landscaping value. Its fruit is additionally used for medicinal purposes (Lim 2012). In June 2020, a leaf spot disease was observed in the campus of Nanjing Forestry University (32°04'34.53″N 118°48'42.06″E). The symptoms began with irregular red-brown spots, which gradually enlarged, extended and overlapped, with an incidence of 85% (29/34 trees). Pieces of leaf tissue (3 to 4 mm²) from the lesion margins were surface-sterilized with 75% ethanol for 30 s and 1% NaClO for 90 s. Subsequently, the tissues were rinsed with sterile H2O, placed on potato dextrose agar (PDA) medium and incubated at 25℃ for 5 days. The same fungus was isolated from 90% of tissues. Pure cultures were obtained by monosporic isolation.The representative isolate NJMG 5-7 was used for morphological and molecular characterization. The growing fungal colony on PDA was initially white, but gradually turned grey. Pycnidia formation was observed on PDA supplemented with alfalfa stems. The pycnidia produced two different types of conidia, α and ß, which ooze out in yellow creamy mucilaginous masses. Conidiophores were hyaline, cylindrical and smooth, 16.8 to 33.1 × 1.5 to 2.6 µm (n=30). Conidiogenous cells were 13.6 to 29.3 × 1.5 to 2.7 µm (n=30). The α-conidia were, unicellular, hyaline elliptical or fusiform, bi-guttulate, 6.5 to 9.2 × 1.8 to 3.3 µm (n = 50). The ß-conidia were hyaline, aseptate, without guttules, filiform, curved, with obtuse ends, 12.5 to 25 × 1.0 to 1.8 µm (n = 50). To verify species identity, the partial sequences of the internal transcribed spacer (ITS) region, and calmodulin (CAL), translation elongation factor 1 alpha (EF1-a), and beta-tubulin genes (TUB) were amplified from isolate NJMG 5-7 with primers ITS1/ITS4 (White et al. 1990), CAL-228F/CAL-737R (Carbone & Kohn 1999), EF1-728F/EF1-986R (Carbone and Kohn 1999), and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. The sequences were deposited in GenBank (OP223050 for ITS, OP252809 for CAL, OP252807 for EF1-a, and OP252808 for TUB). A BLAST search of GenBank showed that ITS, CAL, EF1-a and TUB sequences of NJMG 5-7 were similar to those of D. eres CBS 138594 (99% identity), AR5193 (99%), AR5193 (99%) and MG281193 (100%), respectively. The morphological and molecular results identified the isolate as D. eres (Feng et al. 2015). To fulfill Koch's postulates, a pathogenicity test was conducted using three P. sinensis plants. Six leaves from each tree were wounded and inoculated with mycelial plugs (about 4 mm in diameter) of D. eres from a 3-day-old culture grown on PDA. Inoculations with sterile PDA plugs on different leaves of the same tree were used as controls. All inoculated leaves were enclosed in plastic bags together with a wet cotton ball inside. Sterile H2O was sprayed into the plastic bags to keep moisture conditions. Five days later, all inoculated points showed lesions similar to those previously observed in the field, whereas controls were asymptomatic. The pathogen was successfully reisolated from the inoculated symptomatic parts on PDA and identified from its morphology, thus fulfilling Koch's postulates. This fungus can cause a variety of diseases. To our knowledge, this is the first report of D. eres causing leaf spots on P. sinensis in the world. These findings provide a foundation for future studies on the epidemiology and control of this newly emerging disease.

9.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077250

RESUMO

Iron deficiency causes chlorosis and growth inhibition in Cinnamomum camphora, an important landscaping tree species. Siderophores produced by plant growth-promoting rhizobacteria have been widely reported to play an indispensable role in plant iron nutrition. However, little to date has been determined about how microbial siderophores promote plant iron absorption. In this study, multidisciplinary approaches, including physiological, biochemical and transcriptome methods, were used to investigate the role of deferoxamine (DFO) in regulating Fe availability in C. camphora seedlings. Our results showed that DFO supplementation significantly increased the Fe2+ content, SPAD value and ferric-chelate reductase (FCR) activity in plants, suggesting its beneficial effect under Fe deficiency. This DFO-driven amelioration of Fe deficiency was further supported by the improvement of photosynthesis. Intriguingly, DFO treatment activated the metabolic pathway of glutathione (GSH) synthesis, and exogenous spraying reduced glutathione and also alleviated chlorosis in C. camphora. In addition, the expression of some Fe acquisition and transport-related genes, including CcbHLH, CcFRO6, CcIRT2, CcNramp5, CcOPT3 and CcVIT4, was significantly upregulated by DFO treatment. Collectively, our data demonstrated an effective, economical and feasible organic iron-complexing agent for iron-deficient camphor trees and provided new insights into the mechanism by which siderophores promote iron absorption in plants.


Assuntos
Anemia Hipocrômica , Cinnamomum camphora , Desferroxamina/farmacologia , Perfilação da Expressão Gênica , Ferro/metabolismo , Sideróforos/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499385

RESUMO

The pinewood nematode, Bursaphelenchus xylophilus, has been determined as one of the world's top ten plant-parasitic nematodes. It causes pine wilt, a progressive disease that affects the economy and ecologically sustainable development in East Asia. B. xylophilus secretes pathogenic proteins into host plant tissues to promote infection. However, little is known about the interaction between B. xylophilus and pines. Previous studies reported transthyretin proteins in some species and their strong correlation with immune evasion, which has also been poorly studied in B. xylophilus. In this study, we cloned and functionally validated the B. xylophilus pathogenic protein BxTTR-52, containing a transthyretin domain. An in situ hybridization assay demonstrated that BxTTR-52 was expressed mainly in the esophageal glands of B. xylophilus. Confocal microscopy revealed that BxTTR-52-RFP localized to the nucleus, cytoplasm, and plasma membrane. BxTTR-52 recombinant proteins produced by Escherichia coli could be suppressed by hydrogen peroxide and antioxidant enzymes in pines. Moreover, silencing BxTTR-52 significantly attenuated the morbidity of Pinus thunbergii infected with B. xylophilus. It also suppressed the expression of pathogenesis-related genes in P. thunbergii. These results suggest that BxTTR-52 suppresses the plant immune response in the host pines and might contribute to the pathogenicity of B. xylophilus in the early infection stages.


Assuntos
Pinus , Rabditídios , Tylenchida , Animais , Tylenchida/genética , Pinus/parasitologia , Virulência , Imunidade Inata , Doenças das Plantas/parasitologia
11.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742858

RESUMO

Bursaphelenchus xylophilus is the most economically important species of migratory plant-parasitic nematodes (PPNs) and causes severe damage to forestry in China. The successful infection of B. xylophilus relies on the secretion of a repertoire of effector proteins. The effectors, which suppress the host pine immune response, are key to the facilitation of B. xylophilus parasitism. An exhaustive list of candidate effectors of B. xylophilus was predicted, but not all have been identified and characterized. Here, an effector, named BxSCD3, has been implicated in the suppression of host immunity. BxSCD3 could suppress pathogen-associated molecular patterns (PAMPs) PsXEG1- and INF1-triggered cell death when it was secreted into the intracellular space in Nicotiana benthamiana. BxSCD3 was highly up-regulated in the early infection stages of B. xylophilus. BxSCD3 does not affect B. xylophilus reproduction, either at the mycophagous stage or the phytophagous stage, but it contributes to the virulence of B. xylophilus. Moreover, BxSCD3 significantly influenced the relative expression levels of defense-related (PR) genes PtPR-3 and PtPR-6 in Pinus thunbergii in the early infection stage. These results suggest that BxSCD3 is an important toxic factor and plays a key role in the interaction between B. xylophilus and host pine.


Assuntos
Pinus , Rabditídios , Tylenchida , Animais , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/genética , Virulência/genética , Xylophilus
12.
BMC Plant Biol ; 21(1): 224, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011295

RESUMO

BACKGROUND: The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a devastating pathogen of many Pinus species in China. The aim of this study was to understand the interactive molecular mechanism of PWN and its host by comparing differentially expressed genes and candidate effectors from three transcriptomes of B. xylophilus at different infection stages. RESULTS: In total, 62, 69 and 46 candidate effectors were identified in three transcriptomes (2.5 h postinfection, 6, 12 and 24 h postinoculation and 6 and 15 d postinfection, respectively). In addition to uncharacterized pioneers, other candidate effectors were involved in the degradation of host tissues, suppression of host defenses, targeting plant signaling pathways, feeding and detoxification, which helped B. xylophilus survive successfully in the host. Seven candidate effectors were identified in both our study and the B. xylophilus transcriptome at 2.5 h postinfection, and one candidate effector was identified in all three transcriptomes. These common candidate effectors were upregulated at infection stages, and one of them suppressed pathogen-associated molecular pattern (PAMP) PsXEG1-triggered cell death in Nicotiana benthamiana. CONCLUSIONS: The results indicated that B. xylophilus secreted various candidate effectors, and some of them continued to function throughout all infection stages. These various candidate effectors were important to B. xylophilus infection and survival, and they functioned in different ways (such as breaking down host cell walls, suppressing host defenses, promoting feeding efficiency, promoting detoxification and playing virulence functions). The present results provide valuable resources for in-depth research on the pathogenesis of B. xylophilus from the perspective of effectors.


Assuntos
Interações Hospedeiro-Parasita/genética , Infecções/genética , Nematoides/genética , Nematoides/parasitologia , Parasitos/genética , Pinus/parasitologia , Virulência/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
13.
J Thromb Thrombolysis ; 51(3): 734-740, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32737741

RESUMO

Cerebral cortical vein thrombosis (CCVT) is a rare type of cerebral venous thrombosis, which is frequently combined with cerebral venous sinus thrombosis (CVST). We aimed to compare the difference of clinical features between the isolated and the combined subtypes of CCVT. A literature search was conducted utilizing the PubMed Central and EMBASE databases to identify studies up to Dec 2019. Clinical manifestations, presumable risk factors, imaging modalities, radiological findings, treatment, and prognosis in patients with CCVT were recorded. 335 publications were identified (n = 325, 141 males and 184 females, mean age 40.24 ± 16.26 years). Headaches (46.8%), motor/sensory disorders (43.3%), and seizures (42.5%) were commonly seen. Pregnancy/postpartum (n = 29), oral contraception use (n = 15), fertility drug use (n = 4) ranked the top three comorbidities of CCVT in female patients, while for general populations, thrombophilia, invasive interventions in the cerebrospinal system, as well as malignancy, would be the common risk factors. MRV and DSA were more likely to confirm diagnosis. More than 30% of CCVT presented brain lesions, including infarction (6.5%) and hemorrhage (24.0%). Isolated CCVT was prone to develop hemorrhagic infarction while combined CCVT was more likely to have ischemic lesions. More than 90% of the patients acquired good outcomes at discharge or short-term follow-up (within one year). There is a difference between Isolated CCVT and CCVT combined CVST on the sites and types of brain lesions. MRV and DSA may contribute to the final diagnosis. Most patients acquired complete or partial recovery of clinical symptoms or imaging presentations after long-term anticoagulation (3-6 months).


Assuntos
Anticoagulantes/uso terapêutico , Veias Cerebrais , Trombose Intracraniana , Trombose dos Seios Intracranianos , Adulto , Angiografia Digital/métodos , Veias Cerebrais/diagnóstico por imagem , Veias Cerebrais/patologia , Humanos , Trombose Intracraniana/diagnóstico , Trombose Intracraniana/tratamento farmacológico , Trombose Intracraniana/fisiopatologia , Angiografia por Ressonância Magnética/métodos , Prognóstico , Fatores de Risco , Trombose dos Seios Intracranianos/diagnóstico , Trombose dos Seios Intracranianos/tratamento farmacológico , Trombose dos Seios Intracranianos/fisiopatologia , Avaliação de Sintomas/métodos , Resultado do Tratamento
14.
Plant Dis ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534606

RESUMO

Chaenomeles sinensis is a shrub or small arbor of the genus Chaenomeles in Rosaceae, which is widely planted in China. It is a kind of garden ornamental plant and has high economic value. Since 2020, a leaf disease occurred on the foliage of C. sinensis at the campus of Nanjing Forestry University, Nanjing, China. After investigating, C. sinensis was found with leaf spot disease at a 100% infection rate, which causing gigantic ornamental loss. Leaf spots are round to irregular distributing on the leaves, in addition, the color of spots is brown. There are yellow halos on the edge of the lesion. Small leaf tissues (3 to 4 mm2) from lesion margins were surface sterilized with 75% ethanol for 30s and then rinsed with sterile dH2O for three times. Afterwards, placed on potato dextrose agar (PDA) at 25°C. Pure cultures were obtained by monosporic isolation, and a representative isolate (NJTJ.1) was obtained. When cultured on PDA, the colony of NJTJ.1 was white and cottony. On the reverse side, the color of colony nearly light yellow. The colony were placed in the liquid Carboxymethyl cellulose (CMC) medium. After culturing for 24h in a shaker at 25℃ and 150rmp/min, the spore liquid was taken by us. The conidia were one-celled, straight, hyaline, subcylindrical with rounded ends and measured 15.1 to 23.6× 5.4 to 7.9 µm (n =30). Appressoria were one-celled, brown, thick-walled, ellipsoidal, and measured 7.7 to 13.8 × 6.4 to 10.3 µm (n =30). The morphological characteristics of NJTJ.1 fitted with the description of the Colletotrichhum gloeosporioides complex (Weir et al., 2012). For accurate identification, the internal transcribed spacer (ITS), and the genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT) and chitin synthase (CHS-1) were amplified with primers ITS1/ITS4, GDF/GDR, ACT-512F/ACT-783R, and CHS-79F/CHS-345R (Zhu et al, 2019), respectively. The sequences were deposited in GenBank [Accession Nos.MT984264, MW030495 and MW030496 to MW030497 for NJTJ.1]. A Blast search of GenBank showed that ITS, GAPDH, ACT and CHS-1 sequences of NJTJ.1 were 99%, 99%, 100% and 100% identical to those of C. gloeosporioides (MH571757.1 ,KY995355.1 , MN058143.1 and MN313581.1). A neighbor-joining phylogenetic tree was generated by combining all sequenced loci in MEGA7. The isolate NJTJ.1 clustered in the C. gloeosporioides clade with 99% bootstrap support. The pathogenicity of the NJTJ.1 was verified both on detached and living leaves. The detached leaves were inoculated with 5-mm mycelial plugs cut from the edge of 6-day old cultures on PDA and 20 µL of spore suspension (106 conidia/mL) and each treatment had 5 replicates. Controls were treated with sterile dH2O. The inocula were placed at a distance of 2 to 3 cm on the leaves which were wounded with a sterile needle. All of them were placed in 20-cm dishes on wet filter paper at 25°C. After 5 days, all the inoculated points showed lesions which were similar to those outdoor observed. Whereas, controls were asymptomatic.At the same time, the plugs of C. gloeosporioides were inoculated on living leaves.After 7 days, the leaves which were inoculated also appeared lesions. This is the first report of C. gloeosporioides causing leaf blotch on Chaenomeles sinensis in China. These data will help develop effective strategies for managing this disease.

15.
Langmuir ; 36(46): 14123-14129, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33180511

RESUMO

An electrochemical biosensor based on a water-stable one-dimensional double-chain Cu(II) metal-organic framework (Cu-MOF) directly was constructed for efficiently recognizing l-tyrosine (l-Tyr) in biomimic environments. Cu-MOF: {[Cu(bpe)(fdc) (H2O)(DMF)]·0.5H2O}n (bpe = 1,2-di(4-pyridyl)ethylene, H2fdc = 2,5-furandicarboxylic acid, namely, Cu-1) was synthesized by a hydrothermal method. It was characterized by IR, scanning electron microscopy, atomic force microscopy, and PXRD techniques. Cu-1 exhibited extreme solvent and thermal stability as well as excellent electroconductive character. It was coated on a glassy carbon electrode (GCE) surface to prepare an electrochemical biosensor (Cu-1/GCE) which showed preferable biosensing ability toward l-Tyr. This Cu-MOF electrochemical biosensor showed simple operation and high sensitivity toward l-Tyr in the concentration range from 0.01 to 0.09 mM. The detection limit is 5.822 µM. Furthermore, Cu-1/GCE showed extremely excellent selectivity to l-Tyr in a biomimic environment with several amino acid interferents. This new strategy exhibits great potential applications for designing MOFs with excellent electrochemical activity.

16.
Curr Microbiol ; 77(8): 1405-1411, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32185467

RESUMO

Many studies have focused on the significant role of biofilm formation by Bacillus in the biocontrol process. Bacillus pumilus HR10 is a plant growth-promoting rhizobacterium with multiple biocontrol functions, including promoting growth, controlling pathogens, and assisting in the formation of mycorrhizae. Currently, there is no relevant report on the biofilm formation of B. pumilus HR10 and its influencing factors. B. pumilus HR10 was found to easily form a stable biofilm structure on the surface of media, with awesome swarming ability. The optimum temperature for biofilm formation was 37 °C. B. pumilus HR10 formed most obviously at pH 7.0 and was not extremely sensitive to acidic or alkaline conditions. Most of the polysaccharide components of plant root exudates promoted the biofilm formation by B. pumilus HR10, with glucose having the greatest promoting effect. Low concentrations of Fe2+, Mg2+, Ca2+, K+, and Na+ enhanced biofilm formation. In summary, biofilm formation can improve the tolerance of B. pumilus HR10 to salt and certain heavy metal ion stresses and contribute to its application in different plants and soils with high salinity or heavy metals in the field.


Assuntos
Bacillus pumilus/fisiologia , Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Concentração de Íons de Hidrogênio , Rizosfera , Salinidade , Tolerância ao Sal , Microbiologia do Solo , Temperatura
17.
Curr Microbiol ; 77(3): 388-395, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31834431

RESUMO

A salt-tolerant microbe strain JYZ-SD2 was investigated to develop biological soil amendments to stimulate salix growth and acclimation in costal salt-affected soils. The salt tolerance mechanism of strain JYZ-SD2 was investigated by detecting the salt-tolerant growth characteristics, biofilm formation, ion distribution, secondary metabolites, and zymogram profiling. The strain was identified by physiological and biochemical characteristics (Biolog), 16S rDNA sequencing, and cry1/7/9 gene expressing. With increasing of NaCl concentration, strain JYZ-SD2 adapted to the increased osmotic pressure by prolonging the retardation period, slowing down the growth rate of the logarithmic phase, increasing spo0A gene expression, increasing biofilm formation, reducing Na+ uptake, and changing the expression of metabolites and intracellular soluble proteins. The results showed that strain JYZ-SD2 could be assigned to Bacillus cereus.


Assuntos
Bacillus cereus/classificação , Rizosfera , Salix/microbiologia , Tolerância ao Sal , Plantas Tolerantes a Sal/microbiologia , Bacillus cereus/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Cloreto de Sódio , Microbiologia do Solo , Estresse Fisiológico
18.
Plant Dis ; 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32748724

RESUMO

Pecan (Carya illinoinensis) is important and widely planted nut tree species in Anhui province in China. In a pecan orchard in Anhui, China, 54% of the 1-year-old container-grown seedlings in the nursery developed leaf spots in September 2019. Initially, the brown spots appeared on the leaves. Later, the spots expanded to become brown circles surrounded by a dark brown border. Under severe infection, defoliation occurred and black acervuli were observed on symptomatic leaves. Disease symptoms were not observed on the fruits. To isolate the pathogen, leaf sections (3 to 4 mm) were excised from the margin of the diseased leaf tissues, surface sterilized in 75% alcohol for 30 s and then in 0.1% mercuric chloride for 30s, rinsed three times in sterilized distilled water, plated on potato dextrose agar (PDA) and incubated at 25 °C in the darkness. Pure cultures were obtained by monosporic isolation. The colony of a representative isolate, CZ-4, growing on PDA was circular, white, and cottony, and the surface undulate and pale luteous on PDA. The reverse similar in color. The conidial masses were black and appeared over PDA plates after 14 days. Conidia (15.41-29.48×4.15-7.54µm) (n=50) were fusiform to ellipsoid and four-septate (one basal and one apical cell hyaline, and three brown median cells), with two to three apical appendages. According to colony and conidia morphology, the isolates were identified as Neopestalotiopsis sp. (Maharachchikumbura et al. 2014). Genomic DNA was extracted from single conidial cultures of a representative isolate CZ-4, and the internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1), ß-tubulin (TUB) genes were amplified with the primers described by Wang et al. (2019). The obtained sequences showed 95-99% similarity with those from Neopestalotiopsis chrysea accessions in GenBank. The sequences from this isolate were deposited in GenBank under the following accession numbers: ITS, MT459336; TEF1, MT469880; TUB, MT469881. A neighbor-joining phylogenetic tree was generated by combining all sequenced loci in MEGA7. The isolate CZ-4 clustered in the N. chrysea clade with 98% bootstrap support. To test pathogenicity, ten detached healthy leaves and ten one-year-old Carya illinoinensis plants were inoculated with the same pathogens by spraying 50µl of a conidial suspension (1×106 conidia/ml) on both sides of leaves.As a control treatment, ten additional detached leaves and potted seedlings were inoculated with 50µl sterile water. All plants were covered with clear polyethylene bags and incubated in a greenhouse (Center of Co-Innovation, Institute of Forestry) at 23 ± 5 °C, 80% relative humidity, and a 12-h light/dark cycle.The experiment was repeated three times. Seven days after inoculation, the symptoms were similar to those on the original infected plants, whereas the control leaves remained symptomless. N. chrysea was re-isolated from the lesions, morphologically identified, confirming Koch's postulates. To our knowledge, this is the first report of N. chrysea associated with leaf spot disease on C. illinoinensis. This study provides the foundation to further investigate the biology, epidemiology, and management of this disease.

19.
Plant Dis ; 104(5): 1358-1368, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32196416

RESUMO

Walnut (Juglans regia L.) is an economically important woody nut and edible oil tree all over the world. However, walnut production is limited by walnut anthracnose, which is a disastrous disease that causes significant yield losses. Studying the etiology of anthracnose on walnut and the pathogens' virulence and sensitivities to fungicides would be beneficial for effective control. This study was conducted to identify the pathogen of walnut anthracnose and reveal the population diversity of pathogens through virulence, sensitivities to fungicides, and genetic variation. A total of 13 single-spore Colletotrichum isolates were collected from walnut anthracnose-diseased fruits and leaves from 13 walnut commercial orchards in Henan, Hubei, Shandong, and Shaanxi provinces in China. The isolates were identified as Colletotrichum gloeosporioides sensu stricto (s.s.) according to multilocus phylogenetic analyses (internal transcribed spacer, actin, glyceraldehyde-3-phosphate dehydrogenase, and chitin synthase), morphological as well as cultural characters, and pathogenicity. When the same walnut tissue was inoculated with different isolates, the disease lesion size was different. The results showed that the virulence of all isolates was considerably different, and the differences were not correlated with geographic origins. The virulence to walnut leaves and fruits inoculated with the same isolate was significantly different. Based on the virulence to walnut leaves and fruits, the 13 isolates were divided into three groups. Virulence of 69.2% of the isolates to walnut fruits was higher than that to leaves; 15.4% of isolates had no difference in pathogenicity, and the virulence to walnut leaves was higher for 15.4% of isolates. Tebuconazole, difenoconazole, flusilazole, and carbendazim inhibited the growth of fungal mycelia, and the concentration for 50% of maximal effect (EC50) values were 0.4 to 20.5, 0.6 to 2.6, 0.2 to 1.6, and 0.002 to 0.2 µg/ml, respectively, with average values of 6.5 ± 6.9, 1.5 ± 0.6, 0.9 ± 0.4, and 0.1 ± 0.05 µg/ml, respectively. All isolates were more sensitive to difenoconazole, flusilazole, and carbendazim than tebuconazole (P < 0.01). Isolate sensitivities to the same fungicide were different. Isolates SL-31 and TS-09 were the least sensitive to carbendazim and tebuconazole, respectively, and the resistance ratios were 87.3 and 51.6, respectively. Sensitivities to difenoconazole and flusilazole were largely consistent among all isolates, and the resistance ratios were from 1 to 4.6 and from 1 to 7, respectively. Therefore, difenoconazole and flusilazole could be chosen for disease control. The differences of pathogenicity and fungicide sensitivity were not correlated with geographic regions. These results indicated that there was high intraspecific diversity of populations in C. gloeosporioides s.s. that caused walnut anthracnose. For effective management, the targeted control strategy should be implemented based on the different geographic regions.


Assuntos
Colletotrichum , Fungicidas Industriais , Juglans , China , Nozes , Filogenia , Doenças das Plantas , Virulência
20.
Mol Plant Microbe Interact ; 32(4): 452-463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30351223

RESUMO

The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.


Assuntos
Pinus , Tylenchida , Virulência , Animais , Morte Celular , China , Pinus/parasitologia , Tylenchida/genética , Tylenchida/patogenicidade , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA