Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Methods ; 218: 110-117, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543302

RESUMO

Deep learning has brought a significant progress in medical image analysis. However, their lack of interpretability might bring high risk for wrong diagnosis with limited clinical knowledge embedding. In other words, we believe it's crucial for humans to interpret how deep learning work for medical analysis, thus appropriately adding knowledge constraints to correct the bias of wrong results. With such purpose, we propose Representation Group-Disentangling Network (RGD-Net) to explain the process of feature extraction and decision making inside deep learning framework, where we completely disentangle feature space of input X-ray images into independent feature groups, and each group would contribute to diagnose of a specific disease. Specifically, we first state problem definition for interpretable prediction with auto-encoder structure. Then, group-disentangled representations are extracted from input X-ray images with the proposed Group-Disentangle Module, which constructs semantic latent space by enforcing semantic consistency of attributes. Afterwards, adversarial constricts on mapping from features to diseases are proposed to prevent model collapse during training. Finally, a novel design of local tuning medical application is proposed based on RGB-Net, which is capable to aid clinicians for reasonable diagnosis. By conducting quantity of experiments on public datasets, RGD-Net have been superior to comparative studies by leveraging potential factors contributing to different diseases. We believe our work could bring interpretability in digging inherent patterns of deep learning on medical image analysis.


Assuntos
Oligopeptídeos , Semântica , Humanos
2.
Appl Microbiol Biotechnol ; 105(11): 4535-4550, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34076715

RESUMO

Hexabromocyclododecanes (HBCDs), a new sort of brominated flame retardants (BFRs), are globally prevalent and recalcitrant toxic environmental pollutants. HBCDs have been found in many environmental media and even in the human body, leading to serious health concerns. HBCDs are biodegradable in the environment. By now, dozens of bacteria have been discovered with the ability to transform HBCDs. Microbial debromination of HBCDs is via HBr-elimination, HBr-dihaloelimination, and hydrolytic debromination. Biotic transformation of HBCDs yields many hydroxylated and lower brominated compounds which lack assessment of ecological toxicity. Bioremediation of HBCD pollution has only been applied in the laboratory. Here, we review the current knowledge about microbial debromination of HBCDs, aiming to promote the bioremediation applied in HBCD contaminated sites. KEY POINTS: • Microbial debromination of HBCDs is via hydrolytic debromination, HBr-elimination, and HBr-dihaloelimination. • Newly occurred halogenated contaminants such as HBCDs hitch the degradation pathway tamed by previously discharged anthropogenic organohalides. • Strategy that combines bioaugmentation with phytoremediation for bioremediation of HBCD pollution is promising.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Hidrocarbonetos Bromados , Biodegradação Ambiental , Monitoramento Ambiental , Poluentes Ambientais/análise , Humanos , Hidrocarbonetos Bromados/análise
3.
Biotechnol Appl Biochem ; 67(5): 738-743, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31532860

RESUMO

Marine biomass, especially the algal biomass, is currently considered to be one of the most potential candidates for biofuels conversion during the development of biomass utilization. In this study, a diluted sulfuric acid pretreatment method was established for biobutanol from red algal biomass Gelidium amansii using a newly isolated Clostridium sp. strain WK. Under the optimal condition of 2% sulfuric acid treated in 20 Min at 131 °C, the maximal hydrolysis percentage of biomass can reach up to 80.95%, and the biobutanol production was obtained to be 3.46 g/L with a yield of 0.20 g/g after the fermentation of biomass hydrolysate. This result demonstrated a 12.5-fold enhancement of conversion efficiency compared with the untreated control, which provides a new and efficient way to develop the biobutanol industry by utilizing the abundant, low cost, and carbohydrate-rich algal biomass.


Assuntos
Biocombustíveis , Butanóis/metabolismo , Clostridium/metabolismo , Rodófitas/metabolismo , Ácidos Sulfúricos/metabolismo , Biocombustíveis/análise , Biocombustíveis/microbiologia , Biomassa , Butanóis/análise , Fermentação , Hidrólise
4.
Curr Microbiol ; 75(8): 1011-1015, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29564548

RESUMO

A wild-type solventogenic strain Clostridium diolis WST, isolated from mangrove sediments, was characterized to produce high amount of butanol and acetone with negligible level of ethanol and acids from glucose via a unique acetone-butanol (AB) fermentation pathway. Through the genomic sequencing, the assembled draft genome of strain WST is calculated to be 5.85 Mb with a GC content of 29.69% and contains 5263 genes that contribute to the annotation of 5049 protein-coding sequences. Within these annotated genes, the butanol dehydrogenase gene (bdh) was determined to be in a higher amount from strain WST compared to other Clostridial strains, which is positively related to its high-efficient production of butanol. Therefore, we present a draft genome sequence analysis of strain WST in this article that should facilitate to further understand the solventogenic mechanism of this special microorganism.


Assuntos
Acetona/metabolismo , Oxirredutases do Álcool/genética , Butanóis/metabolismo , Clostridium/genética , Clostridium/metabolismo , Genoma Bacteriano/genética , Composição de Bases , Sequência de Bases , Biocombustíveis , Clostridium/classificação , Glucose/metabolismo , Análise de Sequência de DNA
5.
J Nanosci Nanotechnol ; 17(1): 482-87, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29624327

RESUMO

The state-of-the-art infrared camera suffers from the trade-off between sensitivity and cost. The bolometer infrared sensors are low resolution and slow speed while the quantum photodetectors are bulky and expensive. In this paper, the novel low dimensional material Carbon Nanotube (CNT) based non-cryogenic photodetector is proposed to detect infrared (IR) irradiance. The photoconductance and photovoltaic effect need to be distinguished to fully understand and improve nano IR detector performance. The robust test bench using digital microscope and precise five axis substage is used to measure detector photoresponse. The relative position between nanoscale sensor and IR beam is localized by mapping the photocurrent on laser spot. The distance between photodetector and infrared laser lens is leveraged by digital microscope. The experimental results show photovoltaic quantum effect dominates CNT-Metal Schottky based IR detector and the photoresponse is dependent on contact size and metal materials. The photoresponsivity can reach to 16.8 µA/mW at 808 nm wavelength. The proposed method will be applicable for 1D/2D nanoscale material based photodiode characterization.

6.
Appl Environ Microbiol ; 80(15): 4771-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858088

RESUMO

Cellulose and hemicellulose constitute the major components in sustainable feedstocks which could be used as substrates for biofuel generation. However, following hydrolysis to monomer sugars, the solventogenic Clostridium will preferentially consume glucose due to transcriptional repression of xylose utilization genes. This is one of the major barriers in optimizing lignocellulosic hydrolysates that produce butanol. Unlike studies on existing bacteria, this study demonstrates that newly reported Clostridium sp. strain BOH3 is capable of fermenting 60 g/liter of xylose to 14.9 g/liter butanol, which is similar to the 14.5 g/liter butanol produced from 60 g/liter of glucose. More importantly, strain BOH3 consumes glucose and xylose simultaneously, which is shown by its capability for generating 11.7 g/liter butanol from a horticultural waste cellulosic hydrolysate containing 39.8 g/liter glucose and 20.5 g/liter xylose, as well as producing 11.9 g/liter butanol from another horticultural waste hemicellulosic hydrolysate containing 58.3 g/liter xylose and 5.9 g/liter glucose. The high-xylose-utilization capability of strain BOH3 is attributed to its high xylose-isomerase (0.97 U/mg protein) and xylulokinase (1.16 U/mg protein) activities compared to the low-xylose-utilizing solventogenic strains, such as Clostridium sp. strain G117. Interestingly, strain BOH3 was also found to produce riboflavin at 110.5 mg/liter from xylose and 76.8 mg/liter from glucose during the fermentation process. In summary, Clostridium sp. strain BOH3 is an attractive candidate for application in efficiently converting lignocellulosic hydrolysates to biofuels and other value-added products, such as riboflavin.


Assuntos
Butanóis/metabolismo , Clostridium/metabolismo , Glucose/metabolismo , Xilose/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium/genética , Clostridium/isolamento & purificação , Fermentação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
7.
N Biotechnol ; 82: 85-91, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38777090

RESUMO

Suppressor tRNAs, notable for their capability of reading through the stop codon while maintaining normal peptide synthesis, are promising in treating diseases caused by premature termination codons (PTC). However, the lack of effective engineering methods for suppressor tRNAs has curtailed their application potential. Here, we introduce a directed evolution technology that employs phage-assisted continuous evolution (PACE), combined with gradient biosensors featuring various PTCs in the M13 gene III. Utilizing this novel methodology, we have successfully evolved tRNATrp (UGG) reading through the UGA stop codon in Escherichia coli. Massively parallel sequencing revealed that these mutations predominantly occurred in the anticodon loop. Finally, two suppressor tRNATrp (UGA) mutants exhibited over fivefold increases in readthrough efficiency.


Assuntos
Escherichia coli , RNA de Transferência , Escherichia coli/genética , RNA de Transferência/genética , Evolução Molecular Direcionada , Códon de Terminação/genética , Mutação , Bacteriófago M13/genética
8.
Carbohydr Polym ; 335: 122082, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616100

RESUMO

The preparation of cellulose nanofiber (CNF) using traditional methods is currently facing challenges due to concerns regarding environmental pollution and safety. Herein, a novel CNF was obtained from bamboo shoot shell (BSS) by low-concentration acid and dynamic high-pressure microfluidization (DHPM) treatment. The resulting CNF was then characterized, followed by in vitro and in vivo safety assessments. Compared to insoluble dietary fiber (IDF), the diameters of HIDF (IDF after low-concentration acid hydrolysis) and CNF were significantly decreased to 167.13 nm and 70.97 nm, respectively. Meanwhile, HIDF and CNF showed a higher crystallinity index (71.32 % and 74.35 %). Structural analysis results indicated the successful removal of lignin and hemicellulose of HIDF and CNF, with CNF demonstrating improved thermostability. In vitro, a high dose of CNF (1500 µg/mL) did not show any signs of cytotoxicity on Caco-2 cells. In vivo, no death was observed in the experimental mice, and there was no significant difference between CNF (1000 mg/kg·bw) and control group in hematological index and histopathological analysis. Overall, this study presents an environmentally friendly method for preparing CNF from BSS while providing evidence regarding its safety through in vitro and in vivo assessments, laying the foundation for its potential application in food.


Assuntos
Celulose , Nanofibras , Animais , Camundongos , Humanos , Celulose/toxicidade , Células CACO-2 , Nanofibras/toxicidade , Verduras , Lignina
9.
Int J Biol Macromol ; 258(Pt 2): 128691, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072344

RESUMO

The effective delivery and targeted release of drugs within tumor cells are critical factors in determining the therapeutic efficacy of nanomedicine. To achieve this objective, a conjugate of maltose (Mal) and bovine serum albumin (BSA) was synthesized by the Maillard reaction and self-assembled into nanoparticles with active-targeting capabilities upon pH/heating induction. This nanoparticle could be effectively loaded with doxorubicin (DOX) to form stable nanodrugs (Mal-BSA/DOX) that were sensitive to low pH or high glutathione (GSH), thereby achieving a rapid drug release (96.82 % within 24 h). In vitro cell experiments indicated that maltose-modified BSA particles efficiently enhance cellular internalization via glucose transporters (GLUT)-mediated endocytosis, resulting in increased intracellular DOX levels and heightened expression of γ-H2AX. Consequently, these results ultimately lead to selective tumor cells death, as evidenced by an IC50 value of 3.83 µg/mL in HepG2 cells compared to 5.87 µg/mL in 293t cells. The efficacy of Mal-BSA/DOX in tumor targeting therapy has been further confirmed by in vivo studies, as it effectively delivered a higher concentration of DOX to tumor tissue. This targeted delivery approach not only reduces the systemic toxicity of DOX but also effectively inhibits tumor growth (TGI, 75.95 %). These findings contribute valuable insights into the advancement of targeting-albumin nanomedicine and further support its potential in tumor treatment.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Humanos , Maltose , Portadores de Fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Soroalbumina Bovina , Neoplasias Hepáticas/tratamento farmacológico , Glutationa , Concentração de Íons de Hidrogênio
10.
Small Methods ; : e2301385, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415955

RESUMO

Sugar substitutes are popular due to their akin taste and low calories. However, excessive use of aspartame and erythritol can have varying effects. While D-allulose is presently deemed a secure alternative to sugar, its excessive consumption is not devoid of cellular stress implications. In this study, the evolution of Escherichia coli Nissle 1917 (EcN) is directed to utilize allulose as sole carbon source through a combination of adaptive laboratory evolution (ALE) and fluorescence-activated droplet sorting (FADS) techniques. Employing whole genome sequencing (WGS) and clustered regularly interspaced short palindromic repeats interference (CRISPRi) in conjunction with compensatory expression displayed those genetic mutations in sugar and amino acid metabolic pathways, including glnP, glpF, gmpA, nagE, pgmB, ybaN, etc., increased allulose assimilation. Enzyme-substrate dynamics simulations and deep learning predict enhanced substrate specificity and catalytic efficiency in nagE A247E and pgmB G12R mutants. The findings evince that these mutations hold considerable promise in enhancing allulose uptake and facilitating its conversion into glycolysis, thus signifying the emergence of a novel metabolic pathway for allulose utilization. These revelations bear immense potential for the sustainable utilization of D-allulose in promoting health and well-being.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37030846

RESUMO

Deep learning methods have achieved great success in medical image analysis domain. However, most of them suffer from slow convergency and high computing cost, which prevents their further widely usage in practical scenarios. Moreover, it has been proved that exploring and embedding context knowledge in deep network can significantly improve accuracy. To emphasize these tips, we present CDT-CAD, i.e., context-aware deformable transformers for end-to-end chest abnormality detection on X-Ray images. CDT-CAD firstly constructs an iterative context-aware feature extractor, which not only enlarges receptive fields to encode multi-scale context information via dilated context encoding blocks, but also captures unique and scalable feature variation patterns in wavelet frequency domain via frequency pooling blocks. Afterwards, a deformable transformer detector on the extracted context features is built to accurately classify disease categories and locate regions, where a small set of key points are sampled, thus leading the detector to focus on informative feature subspace and accelerate convergence speed. Through comparative experiments on Vinbig Chest and Chest Det 10 Datasets, CDT-CAD demonstrates its effectiveness in recognizing chest abnormities and outperforms 1.4% and 6.0% than the existing methods in AP50 and AR on VinBig dateset, and 0.9% and 2.1% on Chest Det-10 dataset, respectively.

12.
Foods ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761221

RESUMO

Given its high biological and pharmacological activities, curcumin (CUR) offers promising applications in functional foods. However, its low stability and bioavailability have greatly hindered its application in the food industry. The present study prepared cellulose nanofiber (CNF) from bamboo shoot processing byproducts and investigated its potential as a low-cost carrier. Our results showed that CUR was immobilized on CNF surfaces mainly through hydrogen bonding and eventually encapsulated in CNF matrices, forming a CNF-CUR complex with an encapsulation efficiency of 88.34% and a loading capacity of 67.95%. The CUR encapsulated in the complex showed improved stability after thermal and UV light treatments. Moreover, a slow and extended release pattern of CUR in a simulated gastrointestinal tract was observed, which could be appropriately described using the Korsmeyer-Peppas model. These results revealed that CNF is a promising protective carrier for the slow release of CUR, making it a better candidate for functional foods.

13.
Sci Total Environ ; 861: 160559, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36574546

RESUMO

With the determination of the Leloir pathway in a solventogenic wild-type strain WK through the transcriptional analysis, two pivotal genes (galK and galT) were systematically co-expressed to demonstrate a significantly enhanced galactose utilization for butanol production with the elimination of carbon catabolite repression (CCR). The gene-modified strain WK-Gal-4 could effectively co-utilize galactose and glucose by directly using an ultrasonication-assisted butyric acid-pretreated Gelidium amansii hydrolysate (BAU) as the substrate, exhibiting the optimal sugar consumption and butanol production from BAU of 20.31 g/L and 7.8 g/L with an increment by 62.35 % and 61.49 % over that by strain WK, respectively. This work for the first time develops a feasible approach to utilizing red algal biomass for butanol fermentation through exploring the metabolic regulation of carbohydrate catabolism, also offering a novel route to develop the future biorefinery using the cost-effective and sustainable marine feedstocks.


Assuntos
Repressão Catabólica , Alga Marinha , Butanóis/metabolismo , Galactose , Alga Marinha/metabolismo , Clostridium , 1-Butanol/metabolismo , Glucose/metabolismo , Fermentação
14.
Bioresour Technol ; 373: 128751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805829

RESUMO

To elevate the efficiency of acetone-butanol-ethanol (ABE) fermentation by the wild-type strain WK, an optimal co-utilization system (20 mM Fe3+ and 5 g/L butyrate) was established to bring about a 22.22% increment in the yield of ABE mixtures with a significantly enhanced productivity (0.32 g/L/h). With the heterologous introduction of the secondary alcohol dehydrogenase encoded gene (adh), more than 95% of acetone was eliminated to convert 4.5 g/L isopropanol with corresponding increased butanol and ethanol production by 21.08% and 65.45% in the modified strain WK::adh. Under the optimal condition, strain WK::adh was capable of producing a total of 25.46 g/L IBE biosolvents with an enhanced productivity of 0.35 g/L/h by 45.83% over the original conditions. This work for the first time successfully established a synergetic system of co-utilizing Fe(III) and butyrate to demonstrate a feasible and efficient manner for generating the value-added biofuels through the metabolically engineered solventogenic clostridial strain.


Assuntos
2-Propanol , Butanóis , Fermentação , Compostos Férricos , Acetona , Butiratos , 1-Butanol , Clostridium/genética , Etanol
15.
J Bacteriol ; 194(19): 5470-1, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22965093

RESUMO

A recently discovered wild-type strain, Clostridium beijerinckii G117, is unique in producing butanol and acetone but negligible amounts of ethanol, unlike previously identified acetone-butanol-ethanol (ABE)-generating microbes. Here we report the draft genome sequence of strain G117 (5,806,675 bp; GC content, 29.7%) and the novel findings obtained from its genome annotations.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium beijerinckii/classificação , Clostridium beijerinckii/genética , Genoma Bacteriano , Dados de Sequência Molecular
16.
Prog Mol Subcell Biol ; 53: 299-328, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22222838

RESUMO

Phthalate esters (PAEs) are important industrial compounds mainly used as plasticizers to increase flexibility and softness of plastic products. PAEs are of major concern because of their widespread use, ubiquity in the environment, and endocrine-disrupting toxicity. In this study, two fungal strains, Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 which had the capability to degrade dimethyl phthalate esters (DMPEs), were isolated from mangrove sediments in the Futian Nature Reserve of Shenzhen, China, by enrichment culture technique. These fungi were identified on the basis of spore morphology and molecular typing using 18S rDNA sequence. Comparative investigations on the biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with these two fungi. It was found that both fungi could not completely mineralize DMPEs but transform them to the respective monomethyl phthalate or phthalate acid. Biochemical degradation pathways for different DMPE isomers by both fungi were different. Both fungi could transform DMT to monomethyl terephthalate (MMT) and further to terephthalic acid (TA) by stepwise hydrolysis of two ester bonds. However, they could only carry out one-step ester hydrolysis to transform DMI to monomethyl isophthalate (MMI). Further metabolism of MMI did not proceed. Only Trichosporon sp. was able to transform DMP to monomethyl phthalate (MMP) but not Fusarium sp. The optimal pH for DMI and DMT degradation by Fusarium sp. was 6.0 and 4.5, respectively, whereas for Trichosporon sp., the optimal pH for the degradation of all the three DMPE isomers was at 6.0. These results suggest that the fungal esterases responsible for hydrolysis of the two ester bonds of PAEs are highly substrate specific.


Assuntos
Ésteres , Trichosporon , Biodegradação Ambiental , Ésteres/química , Fusarium/metabolismo , Plastificantes/química , Trichosporon/metabolismo
17.
Bioresour Technol ; 363: 127962, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115509

RESUMO

In this study, Clostridium sp. strain WK-AN1 carrying both genes of agarase (Aga0283) and neoagarobiose hydrolase (NH2780) were successfully constructed to convert agar polysaccharide directly into butanol, contributing to overcome the lack of algal hydrolases in solventogenic clostridia. Through the optimization by the Plackett-Burman design (PBD) and response surface methodology (RSM), a maximal butanol production of 6.42 g/L was achieved from 17.86 g/L agar. Further application of utilizing the butyric acid pretreated Gelidium amansii hydrolysate demonstrated the modified strain obtained the butanol production of 7.83 g/L by 1.63-fold improvement over the wild-type one. This work for the first time establishes a novel route to utilize red algal polysaccharides for butanol fermentation by constructing a solventogenic clostridia-specific secretory expression system for heterologous agarases, which will provide insights for future development of the sustainable third-generation biomass energy.


Assuntos
Butanóis , Rodófitas , 1-Butanol/metabolismo , Ágar/metabolismo , Butanóis/metabolismo , Ácido Butírico/metabolismo , Clostridium/metabolismo , Fermentação , Rodófitas/metabolismo
18.
Bioresour Technol ; 334: 125222, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33951568

RESUMO

Solventogenic clostridia has been considered as one of the most potential microbial cell factories for biofuel production in the biorefinery industry. However, the inherent shortcomings of clostridia strains such as low productivity, by-products formation and toxic tolerance still strongly restrict the large-scale application. Therefore, concerns regarding the genetic modification of solventogenic clostridia have spurred interests into the development of modern gene-editing tools. In this review, we summarize the latest advances of genetic tools involved in modifying solventogenic clostridia. Following a systematic comparison on their respective characteristics, we then review the corresponding strategies for overcoming the obstacles to the enhanced production. Discussing the progress of other microbial cell factories for solventogenesis, we finally describe the key challenges and trends with valuable recommendations for future large-scale biosolvent industrial application.

19.
Sci Total Environ ; 784: 147024, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33895504

RESUMO

Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.


Assuntos
Biocombustíveis , Lignina , Biomassa , Carboidratos , Plantas
20.
Bioresour Technol ; 342: 125939, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34555752

RESUMO

Exploration of the algae-derived biobutanol synthesis has become one of the hotspots due to its highly cost-effective and environment-friendly features. In this study, a solventogenic strain Clostridium sp. strain WK produced 13.96 g/L butanol with a maximal yield of 0.41 g/g from glucose in the presence of 24 g/L butyrate. Transcriptional analysis indicated that the acid re-assimilation of this strain was predominantly regulated by genes buk-ptb rather than ctfAB, explaining its special phenotypes including high butyrate tolerance and the pH-independent fermentation. In addition, a butyric acid-mediated hydrolytic system was established for the first time to release a maximal yield of 0.35 g/g reducing sugars from the red algal biomass (Gelidium amansii). Moreover, 4.48 g/L of butanol was finally achieved with a significant enhancement by 29.9 folds. This work reveals an unconventional metabolic pathway for butanol synthesis in strain WK, and demonstrates the feasibility to develop renewable biofuels from marine resources.


Assuntos
Butanóis , Alga Marinha , 1-Butanol , Ácido Butírico , Clostridium , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA