Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Gerontol ; 116: 37-45, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553024

RESUMO

The Chinese tree shrew (TS) has many unique advantages that make it suitable for use as an experimental animal model for human disease including moderate body size, low cost of feeding, short reproductive cycle and lifespan, and close phylogenetic relationship to primates. Our previous studies have shown that TS treated with the mitochondrial inhibitor MPTP displayed classic Parkinsonian symptoms. Additionally, the structure of TS alpha-synuclein (α-syn) is highly homologous to that found in humans. Previous studies have concluded that misfolded, fibrillar α-syn is a hallmark of α-synucleinopathies. In this study, we examined the distribution and expression levels of α-syn in different TS brain regions. We also obtained recombinant TS α-syn protein to study its aggregation and cytotoxic properties in primary neurons. Our results showed that α-syn was expressed in numerous different brain regions in TS but was most abundant in the hippocampus and midbrain. The recombinant α-syn of TS displayed straight fibrils when incubated for 72 h in vitro, which is very similar to human α-syn. When exposed to primary neurons, the TS and human α-syn fibrils led to cytotoxicity and Lewy-like pathology. Our findings indicated that TS could be a potential animal model to study the pathology of α-synucleinopathies.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Sinucleinopatias/etiologia , Tupaia/metabolismo , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/patologia , Humanos , Neurônios/patologia , Sinucleinopatias/patologia
2.
Appl Biochem Biotechnol ; 177(4): 957-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265394

RESUMO

The synaptic protein alpha-synuclein (α-syn) is associated with a number of neurodegenerative diseases, and homology analyses among many species have been reported. Nevertheless, little is known about the cDNA sequence and protein structure of α-syn in tree shrews, and this information might contribute to our understanding of its role in both health and disease. We designed primers to the human α-syn cDNA sequence; then, tree shrew α-syn cDNA was obtained by RT-PCR and sequenced. Based on the acquired tree shrew α-syn cDNA sequence, both the amino acid sequence and the spatial structure of α-syn were predicted and analyzed. The homology analysis results showed that the tree shrew cDNA sequence matches the human cDNA sequence exactly except at nucleotide positions 45, 60, 65, 69, 93, 114, 147, 150, 157, 204, 252, 270, 284, 298, 308, and 324. Further protein sequence analysis revealed that the tree shrew α-syn protein sequence is 97.1 % identical to that of human α-syn. The secondary protein structure of tree shrew α-syn based on random coils and α-helices is the same as that of the human structure. The phosphorylation sites are highly conserved, except the site at position 103 of tree shrew α-syn. The predicted spatial structure of tree shrew α-syn is identical to that of human α-syn. Thus, α-syn might have a similar function in tree shrew and in human, and tree shrew might be a potential animal model for studying the pathogenesis of α-synucleinopathies.


Assuntos
DNA Complementar/genética , Tupaiidae/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA