Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Neurosci ; 43(9): 1475-1491, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732068

RESUMO

Synaptotagmin 9 (SYT9) is a tandem C2 domain Ca2+ sensor for exocytosis in neuroendocrine cells; its function in neurons remains unclear. Here, we show that, in mixed-sex cultures, SYT9 does not trigger rapid synaptic vesicle exocytosis in mouse cortical, hippocampal, or striatal neurons, unless it is massively overexpressed. In striatal neurons, loss of SYT9 reduced the frequency of spontaneous neurotransmitter release events (minis). We delved into the underlying mechanism and discovered that SYT9 was localized to dense-core vesicles that contain substance P (SP). Loss of SYT9 impaired SP release, causing the observed decrease in mini frequency. This model is further supported by loss of function mutants. Namely, Ca2+ binding to the C2A domain of SYT9 triggered membrane fusion in vitro, and mutations that disrupted this activity abolished the ability of SYT9 to regulate both SP release and mini frequency. We conclude that SYT9 indirectly regulates synaptic transmission in striatal neurons by controlling SP release.SIGNIFICANCE STATEMENT Synaptotagmin 9 (SYT9) has been described as a Ca2+ sensor for dense-core vesicle (DCV) exocytosis in neuroendocrine cells, but its role in neurons remains unclear, despite widespread expression in the brain. This article examines the role of SYT9 in synaptic transmission across cultured cortical, hippocampal, and striatal neuronal preparations. We found that SYT9 regulates spontaneous neurotransmitter release in striatal neurons by serving as a Ca2+ sensor for the release of the neuromodulator substance P from DCVs. This demonstrates a novel role for SYT9 in neurons and uncovers a new field of study into neuromodulation by SYT9, a protein that is widely expressed in the brain.


Assuntos
Substância P , Vesículas Sinápticas , Animais , Camundongos , Sinaptotagminas/metabolismo , Substância P/metabolismo , Vesículas Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Exocitose , Neurotransmissores/metabolismo , Sinaptotagmina I/metabolismo , Cálcio/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810248

RESUMO

Synaptotagmin 1 (syt1) is a Ca2+ sensor that regulates synaptic vesicle exocytosis. Cell-based experiments suggest that syt1 functions as a multimer; however, biochemical and electron microscopy studies have yielded contradictory findings regarding putative self-association. Here, we performed dynamic light scattering on syt1 in solution, followed by electron microscopy, and we used atomic force microscopy to study syt1 self-association on supported lipid bilayers under aqueous conditions. Ring-like multimers were clearly observed. Multimerization was enhanced by Ca2+ and required anionic phospholipids. Large ring-like structures (∼180 nm) were reduced to smaller rings (∼30 nm) upon neutralization of a cluster of juxtamembrane lysine residues; further substitution of residues in the second C2-domain completely abolished self-association. When expressed in neurons, syt1 mutants with graded reductions in self-association activity exhibited concomitant reductions in 1) clamping spontaneous release and 2) triggering and synchronizing evoked release. Thus, the juxtamembrane linker of syt1 plays a crucial role in exocytosis by mediating multimerization.


Assuntos
Neurotransmissores/metabolismo , Animais , Cálcio/metabolismo , Citoplasma/metabolismo , Eletrofisiologia , Exocitose , Técnicas In Vitro , Luz , Bicamadas Lipídicas/química , Lipídeos/química , Lisina/química , Fusão de Membrana , Microscopia de Força Atômica , Neurônios/metabolismo , Fosfolipídeos/química , Terminações Pré-Sinápticas/metabolismo , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo
3.
J Neurosci ; 42(30): 5816-5829, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35701163

RESUMO

Synaptotagmin-1 (Syt1) is a vesicular calcium sensor required for synchronous neurotransmitter release, composed of a single-pass transmembrane domain linked to two C2 domains (C2A and C2B) that bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. Despite its essential role, how Syt1 couples calcium entry to synchronous release is poorly understood. Calcium binding to C2B is critical for synchronous release, and C2B additionally binds the SNARE complex. The C2A domain is also required for Syt1 function, but it is not clear why. Here, we asked what critical feature of C2A may be responsible for its functional role and compared this to the analogous feature in C2B. We focused on highly conserved poly-lysine patches located on the sides of C2A (K189-192) and C2B (K324-327). We tested effects of charge-neutralization mutations in either region (Syt1K189-192A and Syt1K326-327A) side by side to determine their relative contributions to Syt1 function in cultured cortical neurons from mice of either sex and in single-molecule experiments. Combining electrophysiological recordings and optical tweezers measurements to probe dynamic single C2 domain-membrane interactions, we show that both C2A and C2B polybasic patches contribute to membrane binding, and both are required for evoked release. The size of the readily releasable vesicle pool and the rate of spontaneous release were unaffected, so both patches are likely required specifically for synchronization of release. We suggest these patches contribute to cooperative membrane binding, increasing the overall affinity of Syt1 for negatively charged membranes and facilitating evoked release.SIGNIFICANCE STATEMENT Synaptotagmin-1 is a vesicular calcium sensor required for synchronous neurotransmitter release. Its tandem cytosolic C2 domains (C2A and C2B) bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. How calcium binding to Synaptotagmin-1 leads to release and the relative contributions of the C2 domains are unclear. Combining electrophysiological recordings from cultured neurons and optical tweezers measurements of single C2 domain-membrane interactions, we show that conserved polybasic regions in both domains contribute to membrane binding cooperatively, and both are required for evoked release, likely by increasing the overall affinity of Synaptotagmin-1 for acidic membranes.


Assuntos
Domínios C2 , Cálcio , Neurotransmissores , Sinaptotagmina I , Animais , Cálcio/metabolismo , Lipídeos , Camundongos , Neurotransmissores/metabolismo , Proteínas SNARE/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
4.
Environ Dev Sustain ; : 1-29, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35935514

RESUMO

Sustainable supply chain management (SSCM) has received extensive attention by academia and industries recently. However, there are increasing yet still scarce studies measuring the social sustainability performance of supply chain and discussing the interrelationship between social and economic sustainability. Further, the measurement does not fully utilize key performance indicators (KPIs) attributing to the lack of understanding of precise quantitative gauge of the supply chain social sustainable performance. To bridge this gap, this study analyses the social and economic sustainability performance in terms of demand planning, innovation, manufacturing, finance, sales and customer relationship, distribution and delivery and compliance. A framework is proposed to locate key metrics to evaluate the social sustainable supply chain (SSC) performance. A hybrid fuzzy-AHP-DEMATEL-VIKOR method is designed to investigate the social sustainability of supply chain. Data analysis and a case study are given to validate and support the feasibility and potency of the proposed approach. The robustness of our proposed model is executed via sensitivity analysis. From the proposed framework, demand planning and distribution and delivery are found to be the most critical criteria in economic and social dimension, respectively.

5.
Biophys J ; 110(7): 1538-1550, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27074679

RESUMO

Flickering of fusion pores during exocytotic release of hormones and neurotransmitters is well documented, but without assays that use biochemically defined components and measure single-pore dynamics, the mechanisms remain poorly understood. We used total internal reflection fluorescence microscopy to quantify fusion-pore dynamics in vitro and to separate the roles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and lipid bilayer properties. When small unilamellar vesicles bearing neuronal v-SNAREs fused with planar bilayers reconstituted with cognate t-SNARES, lipid and soluble cargo transfer rates were severely reduced, suggesting that pores flickered. From the lipid release times we computed pore openness, the fraction of time the pore is open, which increased dramatically with cholesterol. For most lipid compositions tested, SNARE-mediated and nonspecifically nucleated pores had similar openness, suggesting that pore flickering was controlled by lipid bilayer properties. However, with physiological cholesterol levels, SNAREs substantially increased the fraction of fully open pores and fusion was so accelerated that there was insufficient time to recruit t-SNAREs to the fusion site, consistent with t-SNAREs being preclustered by cholesterol into functional docking and fusion platforms. Our results suggest that cholesterol opens pores directly by reducing the fusion-pore bending energy, and indirectly by concentrating several SNAREs into individual fusion events.


Assuntos
Colesterol/metabolismo , Fusão de Membrana , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Cinética , Microscopia de Fluorescência , Modelos Moleculares , Conformação Proteica , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
6.
Growth Factors ; 34(5-6): 159-165, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27681688

RESUMO

OBJECTIVE: To investigate the role of intrauterine malnourishment in the development and function of pancreatic islet ß-cells. METHODS: Whole-cell patch clamping was used to record voltage-gated calcium channel (VGCC)-mediated currents. Insulin secretion was detected by measuring capacitance using a sequence of sine wave stimuli. VGCC currents and insulin secretion were measured in the small for gestational age (SGA) group treated with human recombinant growth hormone (hGH). RESULTS: The membrane capacitance in the SGA group (6.4 ± 0.9 fF/Pf) was significantly reduced. Calcium current density and peak current density in the SGA group were also markedly decreased, whereas other measurements of calcium channels were unaltered. Treatment with hGH significantly rescued the membrane capacitance, whereas calcium channels were not affected. CONCLUSION: Our data suggest that decreased ß-cell secretion is caused by a decreased expression of calcium channels and reduced calcium currents. hGH restores ß-cell secretion in SGA animals, possibly independently of VGCC.


Assuntos
Canais de Cálcio/metabolismo , Retardo do Crescimento Fetal/metabolismo , Células Secretoras de Insulina/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Feminino , Hormônio do Crescimento/farmacologia , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Traffic ; 13(8): 1124-39, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22540213

RESUMO

Ionotropic glutamate receptors (iGluRs) are expressed in islets and insulinoma cells and involved in insulin secretion. However, the exact roles that iGluRs play in ß cells remain unclear. Here, we demonstrated that GluR2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) were expressed in mouse ß cells. Glutamate application increased both cytosolic calcium and the number of docked insulin-containing granules, which resulted in augmentation of depolarization-induced exocytosis and high-glucose-stimulated insulin release. While glutamate application directly depolarized ß cells, it also induced an enormous depolarization when K(ATP) channels were available. Glutamate application reduced the conductance of K(ATP) channels and increased voltage oscillations. Moreover, actions of AMPARs were absent in Kir6.2 knock-out mice. The effects of AMPARs on K(ATP) channels were mediated by cytosolic cGMP. Taken together, our experiments uncovered a novel mechanism by which AMPARs participate in insulin release.


Assuntos
Exocitose , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de AMPA/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , GMP Cíclico/farmacologia , Exocitose/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de AMPA/fisiologia , Vesículas Secretórias/metabolismo
8.
Virus Res ; 346: 199414, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848817

RESUMO

The human JC polyomavirus (JCV) is a widespread, neurotropic, opportunistic pathogen responsible for progressive multifocal leukoencephalopathy (PML) as well as other diseases in immunosuppressed individuals, including granule cell neuronopathy, JCV-associated nephropathy, encephalitis, and meningitis in rare cases. JCV classification is still unclear, where the ICTV (International Committee on Taxonomy of Viruses) has grouped all the strains into human polyomavirus 2, with no classification on clade and subclade levels. Therefore, JCV strains were previously classified using different genomic regions, e.g., full-length, VP1, and the V-T intergenic region etc., and the strains were grouped into several types related to various geographic locations and human ethnicities. However, neither of these classifications and nomenclature contemplates all the groups described so far. Herein, we evaluated all the available full-length coding genomes, VP1, and large T antigen nucleotide sequences of JCV reported during 1993-2023 and classified them into four major phylogenetic clades, i.e., GI-GIV, where GI is further grouped into two types GI.1 and GI.2 with five sub-clades each (GI.1/GI.2 a-e), GII into three (GII a-c), GIII as a separate clade, and GIV into seven sub-clades (GIV a-g). Similarly, the phylogeographic network analysis indicated four major clusters corresponding to GI-GIV clades, each with multiple subclusters and mutational sub-branches corresponding to the subclades. GI and GIV clusters are connected via GI.1-e reported from Europe and America, GII, GIII and GIV clusters are connected by GII-b and GII-c strains reported from Africa, while GIV cluster strains are connected to the Russia-Italy JCV haplotype. Furthermore, we identified JCV-variant-GS/B-Germany-1997 (GenBank ID: AF004350.1) as an inter-genotype recombinant having major and minor parents in the GI.1-e and GII-a clades, respectively. Additionally, the amino acid variability analysis revealed high entropy across all proteins. The large T antigen exhibited the highest variability, while the small t antigen showed the lowest variability. Our phylogenetic and phylogeographic analyses provide a new approach to genotyping and sub-genotyping and present a comprehensive classification system of JCV strains based on their genetic characteristics and geographic distribution, while the genetic recombination and amino acid variability can help identify pathogenicity and develop effective preventive and control measures against JCV infections.


Assuntos
Genoma Viral , Vírus JC , Filogenia , Filogeografia , Vírus JC/genética , Vírus JC/classificação , Humanos , Leucoencefalopatia Multifocal Progressiva/virologia , Leucoencefalopatia Multifocal Progressiva/epidemiologia , Infecções por Polyomavirus/virologia , Infecções por Polyomavirus/epidemiologia , Variação Genética , Análise por Conglomerados
9.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536730

RESUMO

Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.


Assuntos
Sinapses , Vesículas Sinápticas , Sinaptotagminas , Animais , Camundongos , Potenciais de Ação , Cálcio/metabolismo , Exocitose , Neurotransmissores , Sinapses/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo
10.
Talanta ; 270: 125526, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091748

RESUMO

Logic gate-based fluorescent probes are powerful tools for the discriminative sensing of multiple signaling molecules that are expressed in concert during the progression of many diseases such as inflammation, cancer, aging, and other disorders. To achieve logical sensing, multiple functional groups are introduced to the different substitution sites of a single fluorescent dye, which increases the complexity of chemical synthesis. Herein, we report a simple strategy that incorporates just one responsive unit into a hemicyanine dye achieving the logic gate-based sensing of two independent analytes. We introduce boronic acid to hemicyanine to quench the fluorescence, and in the presence of hydrogen peroxide (H2O2), the fluorescence is recovered due to removal of the boronate. Interestingly, the subsequent decrease in pH turned the red fluorescence of hemicyanine to green emissive because of protonation of the phenolic alcohol. This unique feature of the probe enables us to construct "INHIBIT" and "AND" logical gates for the accurate measuring of intracellular H2O2 and acidic pH in tandem. This study offers insight into the simple construction of logic-gate based fluorescent probes for the tandem sensing of multiple analytes that are correlatively produced during disease progression.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Corantes Fluorescentes/química , Carbocianinas/química , Concentração de Íons de Hidrogênio
11.
J Membr Biol ; 246(2): 101-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23296347

RESUMO

Pancreatic beta cells act as glucose sensors, in which intracellular ATP ([ATP](i)) are altered with glucose concentration change. The characterization of voltage-gated sodium channels under different [ATP](i) remains unclear. Here, we demonstrated that increasing [ATP](i) within a certain range of concentrations (2-8 mM) significantly enhanced the voltage-gated sodium channel currents, compared with 2 mM cytosolic ATP. This enhancement was attenuated by even high intracellular ATP (12 mM). Furthermore, elevated ATP modulated the sodium channel kinetics in a dose-dependent manner. Increased [ATP](i) shifted both the current-voltage curve and the voltage-dependent inactivation curve of sodium channel to the right. Finally, the sodium channel recovery from inactivation was significantly faster when the intracellular ATP level was increased, especially in 8 mM [ATP](i), which is an attainable concentration by the high glucose stimulation. In summary, our data suggested that elevated cytosolic ATP enhanced the activity of Na(+) channels, which may play essential roles in modulating ß cell excitability and insulin release when blood glucose concentration increases.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Glicemia/metabolismo , Eletrofisiologia , Humanos , Técnicas In Vitro , Cinética , Masculino , Camundongos , Pâncreas/metabolismo
12.
Nat Struct Mol Biol ; 29(2): 97-107, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132256

RESUMO

Neurotransmitter release is mediated by proteins that drive synaptic vesicle fusion with the presynaptic plasma membrane. While soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) form the core of the fusion apparatus, additional proteins play key roles in the fusion pathway. Here, we report that the C-terminal amphipathic helix of the mammalian accessory protein, complexin (Cpx), exerts profound effects on membranes, including the formation of pores and the efficient budding and fission of vesicles. Using nanodisc-black lipid membrane electrophysiology, we demonstrate that the membrane remodeling activity of Cpx modulates the structure and stability of recombinant exocytic fusion pores. Cpx had particularly strong effects on pores formed by small numbers of SNAREs. Under these conditions, Cpx increased the current through individual pores 3.5-fold, and increased the open time fraction from roughly 0.1 to 1.0. We propose that the membrane sculpting activity of Cpx contributes to the phospholipid rearrangements that underlie fusion by stabilizing highly curved membrane fusion intermediates.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas do Tecido Nervoso/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Fusão de Membrana/fisiologia , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo
13.
Sheng Li Ke Xue Jin Zhan ; 42(4): 256-60, 2011 Aug.
Artigo em Zh | MEDLINE | ID: mdl-22066416

RESUMO

Glutamate and gamma-aminobutyric acid (GABA) receptors are mainly expressed in central nervous system and play critical roles in neural signal transduction. It has been demonstrated that glutamate and GABA receptors are also found in pancreatic islets. Interestingly, almost all of glutamate and GABA receptor subunits are present in islets. Here, we summarize current progresses of these receptors in islets, focusing on there expressions, physiological implications, interactions, as well as a novel approach to investigate roles of the receptors in islets slice. All these investigations will potentially supply new understanding of working mechanism of these receptors in islet and also shed a new insight for neuroscientific research.


Assuntos
Ilhotas Pancreáticas/metabolismo , Receptores de GABA/fisiologia , Receptores de Glutamato/fisiologia , Animais , Humanos , Receptores de GABA/classificação , Receptores de GABA/metabolismo , Receptores de Glutamato/classificação , Receptores de Glutamato/metabolismo
14.
Elife ; 102021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34190041

RESUMO

All membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered release of neurotransmitters and hormones. Expansion of this small pore to release cargo is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here, we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins. Pore dilation relied on calcium-induced insertion of the tandem C2 domain hydrophobic loops of Syt1 into the membrane, previously shown to reorient the C2 domain. Mathematical modelling suggests that C2B reorientation rotates a bound SNARE complex so that it exerts force on the membranes in a mechanical lever action that increases the height of the fusion pore, provoking pore dilation to offset the bending energy penalty. We conclude that Syt1 exerts novel non-local calcium-dependent mechanical forces on fusion pores that dilate pores and assist neurotransmitter and hormone release.


Assuntos
Proteínas SNARE/metabolismo , Sinaptotagmina I/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Cálcio/metabolismo , Fusão Celular , Membrana Celular , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Lipoproteínas , Modelos Biológicos , Modelos Moleculares , Nanoestruturas , Conformação Proteica , Proteínas SNARE/genética , Sinaptotagmina I/genética , Proteína 2 Associada à Membrana da Vesícula/genética
15.
Nat Chem ; 13(4): 335-342, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33785892

RESUMO

In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA 'nanobricks' to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30-130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.


Assuntos
Centrifugação/métodos , DNA/química , Lipossomos/isolamento & purificação , Proteína 7 Relacionada à Autofagia/metabolismo , Colesterol/análogos & derivados , Lipossomos/metabolismo , Tamanho da Partícula , Proteínas SNARE/metabolismo
16.
Methods Mol Biol ; 1860: 263-275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30317511

RESUMO

During exocytosis, vesicles fuse with the plasma membrane and release their contents. The fusion pore is the initial, nanometer-sized connection between the plasma membrane and the cargo-laden vesicle. A growing body of evidence points toward the fusion pore being a regulator of exocytosis, but the shortcomings of current experimental techniques to investigate single-fusion pores make it difficult to study factors governing pore behavior. Here we describe an assay that fuses v-SNARE-reconstituted nanodiscs with cells ectopically expressing "flipped" t-SNAREs to monitor dynamics of single fusion pores in a biochemically defined system using electrical recordings. We also describe a fluorescence microscopy-based approach to monitor nanodisc-cell fusion that is much simpler to employ, but cannot resolve single pores.


Assuntos
Bioensaio/métodos , Nanoestruturas/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Membrana Celular/química , Membrana Celular/metabolismo , Exocitose , Engenharia Genética , Células HeLa , Humanos , Fusão de Membrana , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/genética , Sintaxina 1/química , Sintaxina 1/genética
17.
Front Mol Neurosci ; 10: 315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29066949

RESUMO

Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically defined setting which have recently become available. Finally, computer simulations are valuable mechanistic tools because they have the power to access small length scales and very short times that are experimentally inaccessible.

18.
Mol Med Rep ; 16(4): 4247-4252, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28731156

RESUMO

It has been previously identified that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) are expressed in pancreatic ß cells and regulate exocytosis and insulin release. It is known that protein interacting with C­kinase 1 (PICK1) regulates trafficking and synaptic targeting of AMPARs in the central nervous system. However, it is unknown whether PICK1 regulates glutamate­induced insulin release in ß cells. The present study demonstrated that glutamate­induced exocytosis was increased in ß cells derived from PICK1­knockout mice. In agreement with this result, adding PICK1 in ß cells reduced glutamate­induced exocytosis, whereas adding EVKI, a peptide that interrupts the interaction between AMPARs and PICK1, increased the exocytosis of ß cells with the application of glutamate. Furthermore, the conductance of ATP­sensitive potassium (KATP) channels was reduced in PICK1­knockout mice, which was reversed by the overexpression of PICK1. In addition, PICK1 application reduced voltage oscillation induced by the closure of KATP. Taken together, the results indicate that PICK1 regulates glutamate­induced exocytosis in ß cells.


Assuntos
Proteínas de Transporte/metabolismo , Exocitose , Ácido Glutâmico/farmacologia , Células Secretoras de Insulina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais KATP/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ciclo Celular , Exocitose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Proteínas Nucleares/deficiência
19.
Elife ; 62017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29083305

RESUMO

Many biological processes rely on protein-membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach, single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2-7 pN and had binding energies of 4-14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein-membrane interactions.


Assuntos
Membrana Celular/metabolismo , Imagem Individual de Molécula/métodos , Ligação Proteica , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo
20.
Elife ; 62017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28346138

RESUMO

Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion).


Assuntos
Exocitose , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Células HeLa , Hormônios/metabolismo , Humanos , Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA