RESUMO
BACKGROUND AND PURPOSE: Until now, except thrombolysis, the therapeutical strategies targeting the acute phase of cerebral ischemia have been proven ineffective, and no approach is available to attenuate the delayed cell death mechanisms and the resulting functional deficits in the late phase. Then, we investigated whether a targeted and delayed delivery of pituitary adenylate cyclase-activating polypeptide (PACAP), a peptide known to exert neuroprotective activities, may dampen delayed pathophysiological processes improving functional recovery. METHODS: Three days after permanent focal ischemia, PACAP-producing stem cells were transplanted intracerebro ventricularly in nonimmunosuppressed mice. At 7 and 14 days post ischemia, the effects of this stem cell-based targeted delivery of PACAP on functional recovery, volume lesions, and inflammatory processes were analyzed. RESULTS: The delivery of PACAP in the vicinity of the infarct zone 3 days post stroke promotes fast, stable, and efficient functional recovery. This was correlated with a modulation of the postischemic inflammatory response. Transcriptomic and Ingenuity Pathway Analysis-based bioinformatic analyses identified several gene networks, functions, and key transcriptional factors, such as nuclear factor-κB, C/EBP-ß, and Notch/RBP-J as PACAP's potential targets. Such PACAP-dependent immunomodulation was further confirmed by morphometric and phenotypic analyses of microglial cells showing increased number of Arginase-1(+) cells in mice treated with PACAP-expressing cells specifically, demonstrating the redirection of the microglial response toward a neuroprotective M2 phenotype. CONCLUSIONS: Our results demonstrated that immunomodulatory strategies capable of redirecting the microglial response toward a neuroprotective M2 phenotype in the late phase of brain ischemia could represent attractive options for stroke treatment in a new and unexploited therapeutical window.
Assuntos
Polaridade Celular/fisiologia , Macrófagos/metabolismo , Microglia/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Polaridade Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Injeções Intraventriculares , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/terapia , Fatores de TempoRESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target. METHODS AND FINDINGS: Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001), increased muscle strength in vitro (p < 0.001) and in vivo (p = 0.012), and pro-fibrotic molecular signatures. Serum creatine kinase (CK) levels were lower (p = 0.025), and reduced cognitive impairment (p = 0.006) and bone structure alterations (p < 0.001) were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0.038), diaphragm (p = 0.042), and heart muscles (p < 0.001). We show that the amelioration of symptoms was proportional to the extent of receptor depletion and that improvements were observed following administration of two P2RX7 antagonists (CK, p = 0.030 and p = 0.050) without any detectable side effects. However, approaches successful in animal models still need to be proved effective in clinical practice. CONCLUSIONS: These results are, to our knowledge, the first to establish that a single treatment can improve muscle function both short and long term and also correct cognitive impairment and bone loss in DMD model mice. The wide-ranging improvements reflect the convergence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the DMD mouse model, this receptor is an attractive target for translational research: existing drugs with established safety records could potentially be repurposed for treatment of this lethal disease.
Assuntos
Distrofia Muscular de Duchenne/genética , Receptores Purinérgicos P2X7/genética , Animais , Modelos Animais de Doenças , Terapia Genética , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/terapia , Fenótipo , Transdução de SinaisRESUMO
PC12 cells are used to study the signaling mechanisms underlying the neurotrophic and neuroprotective activities of pituitary adenylate cyclase-activating polypeptide (PACAP) and nerve growth factor (NGF). Previous microarray experiments indicated that serpinb1a was the most induced gene after 6 h of treatment with PACAP or NGF. This study confirmed that serpinb1a is strongly activated by PACAP and NGF in a time-dependent manner with a maximum induction (~ 50-fold over control) observed after 6 h of treatment. Co-incubation with PACAP and NGF resulted in a synergistic up-regulation of serpinb1a expression (200-fold over control), suggesting that PACAP and NGF act through complementary mechanisms. Consistently, PACAP-induced serpinb1a expression was not blocked by TrkA receptor inhibition. Nevertheless, the stimulation of serpinb1a expression by PACAP and NGF was significantly reduced in the presence of extracellular signal-regulated kinase, calcineurin, protein kinase A, p38, and PI3K inhibitors, indicating that the two trophic factors share some common pathways in the regulation of serpinb1a. Finally, functional investigations conducted with siRNA revealed that serpinb1a is not involved in the effects of PACAP and NGF on PC12 cell neuritogenesis, proliferation or body cell volume but mediates their ability to block caspases 3/7 activity and to promote PC12 cell survival.
Assuntos
Meios de Cultura Livres de Soro/farmacologia , Fator de Crescimento Neural/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Serpinas/biossíntese , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células PC12 , RatosRESUMO
Subarachnoid hemorrhage (SAH) can be associated with neurological deficits and has profound consequences for mortality and morbidity. Cerebral vasospasm (CVS) and delayed cerebral ischemia affect neurological outcomes in SAH patients, but their mechanisms are not fully understood, and effective treatments are limited. Here, we report that urotensin II receptor UT plays a pivotal role in both early events and delayed mechanisms following SAH in male mice. Few days post-SAH, UT expression is triggered by blood or hemoglobin in the leptomeningeal compartment. UT contributes to perimeningeal glia limitans astrocyte reactivity, microvascular alterations and neuroinflammation independent of CNS-associated macrophages (CAMs). Later, CAM-dependent vascular inflammation and subsequent CVS develop, leading to cognitive dysfunction. In an SAH model using humanized UTh+/h+ male mice, we show that post-SAH CVS and behavioral deficits, mediated by UT through Gq/PLC/Ca2+ signaling, are prevented by UT antagonists. These results highlight the potential of targeting UT pathways to reduce early meningeal response and delayed cerebral ischemia in SAH patients.
Assuntos
Macrófagos , Meninges , Receptores Acoplados a Proteínas G , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Animais , Masculino , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Vasoespasmo Intracraniano/metabolismo , Vasoespasmo Intracraniano/etiologia , Camundongos , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Meninges/metabolismo , Humanos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Astrócitos/metabolismoRESUMO
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Animais , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/químicaRESUMO
We integrate research on global work demands (Shaffer et al., 2012) with transactional stress theory to examine both the harmful and beneficial effects of three global work demands-international travel, cognitive flexibility, and nonwork disruption-for employees engaged in global work. We propose that global work demands have indirect, and conditional, effects on burnout and work-to-family conflict (WFC), as well as thriving and work-family enrichment, through employees' appraisals that their global work is both hindering and challenging, respectively. We tested the hypotheses with a matched sample of 229 global employees and their spouses. We found that cognitive flexibility demands are related to harmful and beneficial outcomes: It increases WFC through hindrance appraisals of the global work, but also increases thriving through challenge appraisals. In comparison, international travel demands have only beneficial outcomes, such that it positively related to employee thriving through challenge appraisals, but only among employees working in jobs that have fewer nonwork disruption demands. Finally, nonwork disruption demands had only harmful effects in that it positively related to burnout and WFC through hindrance appraisals. Exploratory analyses also revealed that nonwork disruption demands negatively related to employee thriving, through challenge appraisals, when employees experienced lower levels of cognitive flexibility demands. These findings contribute to our understanding of how employees may react to their global work demands and to the transactional theory of stress by providing a more nuanced understanding of when and why job demands contribute to appraisals that work is hindering and/or challenging. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Assuntos
Esgotamento Profissional , Humanos , Inquéritos e Questionários , Esgotamento Profissional/psicologia , Conflito FamiliarRESUMO
In the rodent cerebellum, PACAP is expressed by Purkinje neurons and PAC1 receptors are present on granule cells during both the development period and in adulthood. Treatment of granule neurons with PACAP inhibits proliferation, slows migration, promotes survival and induces differentiation. PACAP also protects cerebellar granule cells against the deleterious effects of neurotoxic agents. Most of the neurotrophic effects of PACAP are mediated through the cAMP/PKA signaling pathway and often involve the ERK MAPkinase. Caspase-3 is one of the key enzymes implicated in the neuroprotective action of PACAP but PACAP also inhibits caspase-9 activity and increases Bcl-2 expression. PACAP and functional PAC1 receptors are expressed in the monkey and human cerebellar cortex with a pattern of expression very similar to that described in rodents, suggesting that PACAP could also exert neurodevelopmental and neuroprotective functions in the cerebellum of primates including human.
Assuntos
Córtex Cerebelar/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacosRESUMO
Chemotactic migration is a fundamental behavior of cells and its regulation is particularly relevant in physiological processes such as organogenesis and angiogenesis, as well as in pathological processes such as tumor metastasis. The majority of chemotactic stimuli activate cell surface receptors that belong to the G protein-coupled receptor (GPCR) superfamily. Although the autophagy machinery has been shown to play a role in cell migration, its mode of regulation by chemotactic GPCRs remains largely unexplored. We found that ligand-induced activation of 2 chemotactic GPCRs, the chemokine receptor CXCR4 and the urotensin 2 receptor UTS2R, triggers a marked reduction in the biogenesis of autophagosomes, in both HEK-293 and U87 glioblastoma cells. Chemotactic GPCRs exert their anti-autophagic effects through the activation of CAPNs, which prevent the formation of pre-autophagosomal vesicles from the plasma membrane. We further demonstrated that CXCR4- or UTS2R-induced inhibition of autophagy favors the formation of adhesion complexes to the extracellular matrix and is required for chemotactic migration. Altogether, our data reveal a new link between GPCR signaling and the autophagy machinery, and may help to envisage therapeutic strategies in pathological processes such as cancer cell invasion.
Assuntos
Autofagossomos/metabolismo , Quimiotaxia , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Calpaína/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Endocitose , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m(3)/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders.
Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Hipersensibilidade Respiratória/tratamento farmacológico , Administração por Inalação , Aerossóis/química , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vanadatos/toxicidadeRESUMO
The aim of this study was to investigate both functionally and structurally bronchodilator effects of Pituitary adenylate cyclase activating peptide (PACAP38) and acetyl-[Ala15, Ala20] PACAP38-polyamide, a potent PACAP38 analog, in rats challenged by methacholine (MeCh). Male Wistar rats were divided randomly into five groups. Groups 1 and 2 inhaled respectively aerosols of saline or increasing doses of MeCh (0.5, 1, 2.12, 4.25, 8.5, 17, 34 and 68mg/L). The other groups received terbutaline (Terb) (250 µg/rat) (10-6 M), PACAP38 (50 µg/rat) (0.1 mM) or PACAP38 analog (50 µg/rat) associated to MeCh from the dose of 4.25 mg/L. Total lung resistances (RL) were recorded before and 2 min after MeCh administration by pneumomultitest equipment. MeCh administration induced a significant and a dose-dependent increase (p<0.05) of RL compared to control rats. Terb, PACAP38 and PACAP38 analog reversed significantly the MeCh-induced bronchial constriction, smooth muscle (SM) layer thickness and bronchial lumen mucus abundance. PACAP38 analog prevents effectively bronchial smooth muscle layer thickness, mucus hypersecretion and lumen decrease. Therefore, it may constitute a potent therapeutic bronchodilator.
O objetivo deste estudo foi investigar funcionalmente e estruturalmente efeito broncodilatador do peptídeo ativador da adenilato ciclase pituitária (PACAP1-38) e da acetil-[Ala15, Ala20]PACAP 38-poliamida, potente análogo do PACAP-38, nos ratos desafiados pelo metacolina (MeCh). Ratos Wistar machos foram aleatoriamente divididos em cinco grupos. Grupos 1 e 2, inalando aerossóis de solução salina ou doses crescentes de MeCh (0,5, 1, 2,12, 4,25, 8,5, 17, 34 e 68 mg/L). Os outros grupos recebendo terbutalina (Terb) (250 µg/rato) (10-6M), PACAP-38 (50 µg/rato) (0.1 mM) ou análogo do PACAP-38 (50 µg/rato) associados a MeCh na dose de 4,25 mg/L. A resistência pulmonar total (RL) foi registrada antes e 2 min após a administração de Mech pelo equipamento pneumomultiteste. A administração MeCh induziu aumento significativo e dose dependente (p<0,05) de RL em comparação com ratos do grupo controle. Terb e PACAP1-38 e análogo do PACAP-38 reverteram, significativamente, a constrição brônquica induzida por Mech, a espessura do músculo liso (SM) e abundância de muco do lume brônquico. O análogo PACAP-38 do mesmo modo que a Terb impediu a responsividade brônquica a MeCh e pode se constituir em um importante regulador no desenvolvimento da doença inflamatório pulmonar. Contudo, o uso do peptídeo nativo para aplicações terapêuticas é limitado por sua baixa estabilidade metabólica. Consequentemente, o análogo metabolicamente estável representa ferramenta promissora no tratamento de doenças pulmonares inflamatórias.
Assuntos
Ratos , Adenilil Ciclases/análise , Cloreto de Metacolina/análise , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/análise , Broncodilatadores/efeitos adversos , Cloreto de Metacolina/farmacocinética , Pneumopatias/reabilitaçãoRESUMO
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.
Assuntos
Membrana Celular/fisiologia , Citoesqueleto/fisiologia , Microdomínios da Membrana/fisiologia , Actinas/metabolismo , Animais , Células COS , Membrana Celular/química , Chlorocebus aethiops , Colesterol/metabolismo , Citoesqueleto/química , Difusão , Humanos , Microdomínios da Membrana/química , Proteínas de Membrana/metabolismo , Fase de Repouso do Ciclo Celular/fisiologia , Esfingolipídeos/metabolismoRESUMO
The mechanisms that regulate CD4(+) T cells responses in vivo are still poorly understood. We show here that initial Ag stimulation induces in CD4(+) T cells a program of proliferation that can develop, for at least seven cycles of division, in the absence of subsequent Ag or cytokine requirement. Thereafter, proliferation stops but can be reinitiated by novel Ag stimulation. This initial Ag stimulation does not however suffice to induce the differentiation of naive CD4(+) T cells into effector Th1 cells which requires multiple contacts with Ag-loaded APC. Thus, recurrent exposure to both Ag and polarizing cytokines appears to be essential for the differentiation of IFN-gamma-producing cells. Ag and cytokine availability therefore greatly limits the differentiation, but not the initial proliferation, of CD4(+) T cells into IFN-gamma-producing cells.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Muramidase/imunologia , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antígenos/imunologia , Diferenciação Celular , Células Cultivadas , Citocinas/farmacologia , Citometria de Fluxo , Cinética , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Proteínas com Domínio T , Células Th1/imunologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Ativação TranscricionalRESUMO
The mechanisms by which Th1 and Th2 cells inter-regulate in vivo are still poorly understood. In this study we examined the plasticity of Th1 cell differentiation and how Th2 cells may down-regulate these responses. We show here that IL-4 affects Th1 cell responses by two developmentally regulated mechanisms. During the commitment phase of naive CD4+ T cells, IL-4 inhibits Th1 cell differentiation and induces a reversion of developing Th1 cells to the Th2 lineage. In contrast, for effector Th1 cells IL-4 does not affect the developmental process, but only the transcription of the IFN-gamma gene. We further show that the difference in IL-4 responsiveness correlates with a loss, in effector Th1 cells, of IL-4-dependent up-regulation of GATA-3 expression despite normal activation of STAT6. Transient inhibition of IFN-gamma production by differentiated effector cells may explain why Th1 and Th2 responses can co-exist in vivo although Th2 effector cells dominate functionally, as observed in some infectious or autoimmune mice models.
Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Interferon gama/biossíntese , Interleucina-4/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Anticorpos/metabolismo , Anticorpos/farmacologia , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição GATA3 , Expressão Gênica/genética , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Camundongos , Fator de Transcrição STAT6 , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regulação para CimaRESUMO
The Cre-loxP system permits the generation of mouse models in which the fate of a cell can be followed through time. Such approach is of great value in immunology because it may allow lineage studies and the dissection of the contribution of specific effector T cells to long-term memory responses or autoimmune responses. An essential component of such a strategy is the development of appropriate reporter strains of mice in which the inducible reporter molecule is not immunogenic and is well expressed at the cell surface of T cells. We describe here a novel reporter strain of mice that is designed to fulfill these criteria and show that this strain permits the monitoring of Cre-mediated recombination in both T cells and NK cells.