RESUMO
OBJECTIVE: To explore whether the utility of neurofilament light chain (NfL), as a biomarker to aid amyotrophic lateral sclerosis (ALS) therapy development, would be enhanced by obtaining formal qualification from the US Food and Drug Administration for a defined context-of-use. METHODS: Consensus discussion among academic, industry, and patient advocacy group representatives. RESULTS: A wealth of scientific evidence supports the use of NfL as a prognostic, response, and potential safety biomarker in the broad ALS population, and as a risk/susceptibility biomarker among the subset of SOD1 pathogenic variant carriers. Although NfL has not yet been formally qualified for any of these contexts-of-use, the US Food and Drug Administration has provided accelerated approval for an SOD1-lowering antisense oligonucleotide, based partially on the recognition that a reduction in NfL is reasonably likely to predict a clinical benefit. INTERPRETATION: The increasing incorporation of NfL into ALS therapy development plans provides evidence that its utility-as a prognostic, response, risk/susceptibility, and/or safety biomarker-is already widely accepted by the community. The willingness of the US Food and Drug Administration to base regulatory decisions on rigorous peer-reviewed data-absent formal qualification, leads us to conclude that formal qualification, despite some benefits, is not essential for ongoing and future use of NfL as a tool to aid ALS therapy development. Although the balance of considerations for and against seeking NfL biomarker qualification will undoubtedly vary across different diseases and contexts-of-use, the robustness of the published data and careful deliberations of the ALS community may offer valuable insights for other disease communities grappling with the same issues. ANN NEUROL 2024;95:211-216.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Superóxido Dismutase-1 , Filamentos Intermediários , Biomarcadores , Prognóstico , Proteínas de NeurofilamentosRESUMO
BACKGROUND: Cognitive and behavioural dysfunction may occur in people with motor neuron disease (MND), with some studies suggesting an association with the C9ORF72 repeat expansion. Their onset and progression, however, is poorly understood. We explored how cognition and behaviour change over time, and whether demographic, clinical and genetic factors impact these changes. METHODS: Participants with MND were recruited through the Phenotype-Genotype-Biomarker study. Every 3-6 months, the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was used to assess amyotrophic lateral sclerosis (ALS) specific (executive functioning, verbal fluency, language) and ALS non-specific (memory, visuospatial) functions. Informants reported on behaviour symptoms via semi-structured interview. RESULTS: Participants with neuropsychological data at ≥3 visits were included (n=237, mean age=59, 60% male), of which 18 (8%) were C9ORF72 positive. Baseline cognitive impairment was apparent in 18 (8%), typically in ALS specific domains, and associated with lower education, but not C9ORF72 status. Cognition, on average, remained stable over time, with two exceptions: (1) C9ORF72 carriers declined in all ECAS domains, (2) 8%-9% of participants with baseline cognitive impairment further declined, primarily in the ALS non-specific domain, which was associated with less education. Behavioural symptoms were uncommon. CONCLUSIONS: In this study, cognitive dysfunction was less common than previously reported and remained stable over time for most. However, cognition declines longitudinally in a small subset, which is not entirely related to C9ORF72 status. Our findings raise questions about the timing of cognitive impairment in MND, and whether it arises during early clinically manifest disease or even prior to motor manifestations.
Assuntos
Esclerose Lateral Amiotrófica , Disfunção Cognitiva , Doença dos Neurônios Motores , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Esclerose Lateral Amiotrófica/diagnóstico , Proteína C9orf72/genética , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/complicações , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Cognição/fisiologia , Testes NeuropsicológicosRESUMO
Interest in amyotrophic lateral sclerosis (ALS) biomarkers has grown exponentially over the course of the last 25 years, with great hope that they might serve as tools to facilitate the development of meaningful therapies for this otherwise inexorably progressive and invariably fatal disease. Effective use of biomarkers, however, requires an understanding of what it means for them to be 'fit-for-purpose' as well as an appreciation of the nuances of the clinical context(s) in which they will be applied. Neurofilament light chain (NfL) has emerged as a leading candidate with enormous potential to aid ALS therapy development; it is, however, also profoundly misunderstood. Within the conceptual framework of the BEST (Biomarkers, EndpointS, and other Tools) Resource, developed by the National Institutes of Health and the Food and Drug Administration in the USA, we consider the evidence supporting the use of NfL for a variety of purposes in different clinical contexts. We conclude that: (i) it may serve as a susceptibility/risk biomarker in populations at elevated risk for ALS; (ii) it has value as a prognostic biomarker when measured early in the course of established disease, empowering stratification or dynamic randomization to amplify the signal-to-noise ratio of promising therapeutics; and (iii) there is sufficient evidence to support the use of a reduction in NfL in response to an experimental therapeutic as a pharmacodynamic biomarker that may aid in phase 2 trial go/no-go decisions. Moreover, the basis for expecting that a reduction in NfL is a reasonably likely surrogate end-point (i.e. reasonably likely to predict clinical benefit-which may be more than simply survival) is nuanced, and depends on when in the course of disease the experimental therapeutic is administered.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Filamentos Intermediários , Biomarcadores , Proteínas de Neurofilamentos , Desenvolvimento de MedicamentosRESUMO
PURPOSE OF REVIEW: Significant progress in characterizing presymptomatic amyotrophic lateral sclerosis (ALS) is ushering in an era of potential disease prevention. Although these advances have largely been based on cohorts of deep-phenotyped mutation carriers at an elevated risk for ALS, there are increasing opportunities to apply principles and insights gleaned, to the broader population at risk for ALS [and frontotemporal dementia (FTD)]. RECENT FINDINGS: The discovery that blood neurofilament light chain (NfL) level increases presymptomatically and may serve as a susceptibility biomarker, predicting timing of phenoconversion in some mutation carriers, has empowered the first-ever prevention trial in SOD1 -ALS. Moreover, there is emerging evidence that presymptomatic disease is not uniformly clinically silent, with mild motor impairment (MMI), mild cognitive impairment (MCI), and/or mild behavioral impairment (MBI) representing a prodromal stage of disease. Structural and functional brain abnormalities, as well as systemic markers of metabolic dysfunction, have emerged as potentially even earlier markers of presymptomatic disease. Ongoing longitudinal studies will determine the extent to which these reflect an endophenotype of genetic risk. SUMMARY: The discovery of presymptomatic biomarkers and the delineation of prodromal states is yielding unprecedented opportunities for earlier diagnosis, treatment, and perhaps even prevention of genetic and apparently sporadic forms of disease.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/prevenção & controle , Demência Frontotemporal/genética , Estudos Longitudinais , Biomarcadores , Doenças AssintomáticasRESUMO
Amyotrophic lateral sclerosis, when viewed as a biological entity rather than a clinical syndrome, probably evolves along a continuum, with the initial clinically silent phase eventually evolving into clinically manifest amyotrophic lateral sclerosis. Since motor neuron degeneration is incremental and cumulative over time, it stands to reason that the clinical syndrome of amyotrophic lateral sclerosis is probably preceded by a prodromal state characterized by minor motor abnormalities that are initially insufficient to permit a diagnosis of amyotrophic lateral sclerosis. This prodromal period, however, is usually missed, given the invariably long delays between symptom onset and diagnostic evaluation. The Pre-Symptomatic Familial ALS Study, a cohort study of pre-symptomatic gene mutation carriers, offers a unique opportunity to observe what is typically unseen. Here we describe the clinical characterization of 20 pre-symptomatic mutation carriers (in SOD1, FUS and C9orf72) whose phenoconversion to clinically manifest disease has been prospectively studied. In so doing, we observed a prodromal phase of mild motor impairment in 11 of 20 phenoconverters. Among the n = 12 SOD1 A4V mutation carriers, phenoconversion was characterized by abrupt onset of weakness, with a short (1-3.5 months) prodromal period observable in a small minority (n = 3); the observable prodrome invariably involved the lower motor neuron axis. By contrast, in all n = 3 SOD1 I113T mutation carriers, diffuse lower motor neuron and upper motor neuron signs evolved insidiously during a prodromal period that extended over a period of many years; prodromal manifestations eventually coalesced into a clinical syndrome that is recognizable as amyotrophic lateral sclerosis. Similarly, in all n = 3 C9orf72 hexanucleotide repeat expansion mutation carriers, focal or multifocal manifestations of disease evolved gradually over a prodromal period of 1-2 years. Clinically manifest ALS also emerged following a prodromal period of mild motor impairment, lasting >4 years and â¼9 months, respectively, in n = 2 with other gene mutations (SOD1 L106V and FUS c.521del6). On the basis of this empirical evidence, we conclude that mild motor impairment is an observable state that precedes clinically manifest disease in three of the most common genetic forms of amyotrophic lateral sclerosis (SOD1, FUS, C9orf72), and perhaps in all genetic amyotrophic lateral sclerosis; we also propose that this might be true of non-genetic amyotrophic lateral sclerosis. As a diagnostic label, mild motor impairment provides the language to describe the indeterminate (and sometimes intermediate) transition between the unaffected state and clinically manifest amyotrophic lateral sclerosis. Recognizing mild motor impairment as a distinct clinical entity should generate fresh urgency for developing biomarkers reflecting the earliest events in the degenerative cascade, with potential to reduce the diagnostic delay and to permit earlier therapeutic intervention.
Assuntos
Esclerose Lateral Amiotrófica , Transtornos Motores , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Sintomas Prodrômicos , Superóxido Dismutase-1/genética , Estudos de Coortes , Diagnóstico Tardio , Transtornos Motores/genética , Mutação/genética , BiomarcadoresRESUMO
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/prevenção & controle , Doenças Assintomáticas , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/prevenção & controleRESUMO
The electronic health record (EHR) is designed principally to support the provision and documentation of clinical care, as well as billing and insurance claims. Broad implementation of the EHR, however, also yields an opportunity to use EHR data for other purposes, including research and quality improvement. Indeed, effective use of clinical data for research purposes has been a long-standing goal of physicians who provide care for patients with ALS, but the quality and completeness of clinical data, as well as the burden of double data entry into the EHR and into a research database, have been persistent barriers. These factors provided motivation for the development of the ALS Toolkit, a set of interactive digital forms within the EHR that enable easy, consistent, and structured capture of information relevant to ALS patient care (as well as research and quality improvement) during clinical encounters. Routine use of the ALS Toolkit within the context of the CReATe Consortium's institutional review board-approved Clinical Procedures to Support Research in ALS (CAPTURE-ALS) study protocol, permits aggregation of structured ALS patient data, with the goals of empowering research and driving quality improvement. Widespread use of the ALS Toolkit through the CAPTURE-ALS protocol will help to ensure that ALS clinics become a driving force for collecting and aggregating clinical data in a way that reflects the true diversity of the populations affected by this disease, rather than the restricted subset of patients that currently participate in dedicated research studies.
Assuntos
Esclerose Lateral Amiotrófica , Médicos , Esclerose Lateral Amiotrófica/terapia , Registros Eletrônicos de Saúde , Humanos , Melhoria de QualidadeRESUMO
BACKGROUND AND PURPOSE: The aim was to evaluate urinary neopterin, a marker of pro-inflammatory state, as a potential biomarker of disease prognosis and progression in amyotrophic lateral sclerosis (ALS); and to compare its utility to urinary neurotrophin receptor p75 extracellular domain (p75ECD ). METHODS: This was an observational study including 21 healthy controls and 46 people with ALS, 29 of whom were sampled longitudinally. Neopterin and p75ECD were measured using enzyme-linked immunoassays. Baseline and longitudinal changes in clinical measures, neopterin and urinary p75ECD were examined, and prognostic utility was explored by survival analysis. RESULTS: At baseline, urinary neopterin was higher in ALS compared to controls (181.7 ± 78.9 µmol/mol creatinine vs. 120.4 ± 60.8 µmol/mol creatinine, p = 0.002, Welch's t test) and correlated with the Revised ALS Functional Rating Scale (r = -0.36, p = 0.01). Combining previously published urinary p75ECD results from 22 ALS patients with a further 24 ALS patients, baseline urinary p75ECD was also higher compared to healthy controls (6.0 ± 2.7 vs. 3.2 ± 1.0 ng/mg creatinine, p < 0.0001) and correlated with the Revised ALS Functional Rating Scale (r = -0.36, p = 0.01). Urinary neopterin and p75ECD correlated with each other at baseline (r = 0.38, p = 0.009). In longitudinal analysis, urinary neopterin increased on average (±SE) by 6.8 ± 1.1 µmol/mol creatinine per month (p < 0.0001) and p75ECD by 0.19 ± 0.02 ng/mg creatinine per month (p < 0.0001) from diagnosis in 29 ALS patients. CONCLUSION: Urinary neopterin holds promise as marker of disease progression in ALS and is worthy of future evaluation for its potential to predict response to anti-inflammatory therapies.
Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores , Progressão da Doença , Humanos , Neopterina , PrognósticoRESUMO
OBJECTIVE: To evaluate neurofilament light (NfL) as a biomarker of the presymptomatic phase of amyotrophic lateral sclerosis (ALS). METHODS: The study population includes 84 individuals at risk for developing ALS, 34 controls, 17 ALS patients, and 10 phenoconverters (at-risk individuals observed both before and after the emergence of clinically manifest disease). At-risk individuals are enrolled through Pre-Symptomatic Familial ALS (Pre-fALS), a longitudinal natural history and biomarker study of individuals who are carriers of any ALS-associated gene mutation (in SOD1, C9orf72, TARDBP, FUS, VCP, etc), but who, at the time of enrollment, demonstrated no clinical symptoms or signs (including electromyographic evidence) of manifest disease. NfL in serum and cerebrospinal fluid (CSF) were quantified using an electrochemiluminescence immunoassay. RESULTS: Serum and CSF NfL are substantially higher in ALS patients compared to controls and at-risk individuals and remain relatively stable over time. Among phenoconverters, however, NfL levels were elevated (ie, above the range observed in controls) as far back as â¼12 months preceding the emergence of the earliest clinical symptoms or signs of disease. INTERPRETATION: Serum (and CSF) NfL are informative biomarkers of presymptomatic ALS, providing a new tool to quantify presymptomatic disease progression and to potentially predict the timing of clinical phenoconversion. As such, quantification of NfL may aid the design and implementation of early therapeutic intervention for affected individuals and/or disease prevention trials for individuals at short-term risk of developing ALS. Ann Neurol 2018 Ann Neurol 2018;83:130-139.
Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Progressão da Doença , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Sintomas Prodrômicos , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Superóxido Dismutase-1/genética , Adulto JovemRESUMO
As potential treatments for C9ORF72-associated amyotrophic lateral sclerosis (c9ALS) approach clinical trials, the identification of prognostic biomarkers for c9ALS becomes a priority. We show that levels of phosphorylated neurofilament heavy chain (pNFH) in cerebrospinal fluid (CSF) predict disease status and survival in c9ALS patients, and are largely stable over time. Moreover, c9ALS patients exhibit higher pNFH levels, more rapid disease progression, and shorter survival after disease onset than ALS patients without C9ORF72 expansions. These data support the use of CSF pNFH as a prognostic biomarker for clinical trials, which will increase the likelihood of successfully developing a treatment for c9ALS. Ann Neurol 2017;82:139-146.
Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Proteína C9orf72 , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Análise de Sobrevida , Adulto JovemRESUMO
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15-30 Hz) power. Cortical beta-band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven "classical" ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS-associated gene mutations were compared with age-similar healthy control groups. Augmented beta desynchronization was observed in both contra- and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237-254, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Ritmo beta/fisiologia , Mapeamento Encefálico , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Idoso , Tomada de Decisões , Feminino , Lateralidade Funcional/fisiologia , Humanos , Inibição Psicológica , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Testes Neuropsicológicos , Tempo de Reação , Índice de Gravidade de DoençaRESUMO
OBJECTIVE: To discern presymptomatic changes in brain structure or function using advanced MRI in carriers of mutations predisposing to amyotrophic lateral sclerosis (ALS). METHODS: T1-weighted, diffusion weighted and resting state functional MRI data were acquired at 3â T for 12 asymptomatic mutation carriers (psALS), 12 age-matched controls and affected patients with ALS. Cortical thickness analysis, voxel-based morphometry, volumetric and shape analyses of subcortical structures, tract-based spatial statistics of metrics derived from the diffusion tensor, and resting state functional connectivity (FC) analyses were performed. RESULTS: Grey matter cortical thickness and shape analysis revealed significant atrophy in patients with ALS (but not psALS) compared with controls in the right primary motor cortex and right caudate. Comparison of diffusion tensor metrics showed widespread fractional anisotropy and radial diffusivity differences in patients with ALS compared to controls and the psALS group, encompassing parts of the corpus callosum, corticospinal tracts and superior longitudinal fasciculus. While FC in the resting-state sensorimotor network was similar in psALS and controls, FC between the cerebellum and a network comprising the precuneus, cingulate & middle frontal lobe was significantly higher in psALS and affected ALS compared to controls. CONCLUSIONS: Rather than structural brain changes, increased FC may be among the earliest detectable brain abnormalities in asymptomatic carriers of ALS-causing gene mutations. With replication and significant refinement, this technique has potential in the future assessment of neuroprotective strategies.
Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Predisposição Genética para Doença/genética , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Adulto , Idoso , Esclerose Lateral Amiotrófica/fisiopatologia , Encéfalo/fisiopatologia , Proteína C9orf72 , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Estudos de Coortes , Tomografia Computadorizada de Feixe Cônico , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiopatologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Triagem de Portadores Genéticos , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Proteínas/genética , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiopatologia , Superóxido Dismutase-1/genética , Adulto JovemRESUMO
Objective: To examine the relationship between body mass index (BMI) and genotype among pre-symptomatic carriers of different pathogenic variants associated with amyotrophic lateral sclerosis. Methods: C9orf72+ carriers, SOD1+ carriers, and pathogenic variant negative controls (Gene-Negatives) were included from 3 largely independent cohorts: ALS Families Project (ALS-Families); Dominantly inherited ALS (DIALS); and Pre-symptomatic Familial ALS (Pre-fALS). First reported (ALS-Families) or measured (DIALS and Pre-fALS) weight and height were used to calculate BMI. Age at weight measurement, self-reported sex (male vs. female), and highest education (high school or below vs. college education vs. graduate school or above) were extracted. The associations between BMI and genotype in each cohort were examined with multivariable linear regression models, adjusted for age, sex, and education. Results: A total of 223 C9orf72+ carriers, 135 SOD1+ carriers, and 191 Gene-Negatives were included, deriving from ALS-Families (n = 114, median age 46, 37% male), DIALS (n = 221, median age 46, 30% male), and Pre-fALS (n = 214, median age 44, 39% male). Adjusting for age, sex, and education, the mean BMI of C9orf72+ carriers was lower than Gene-Negatives by 2.4 units (95% confidence interval [CI] = 0.3-4.6, p = 0.02) in ALS-Families; 2.7 units (95% CI = 0.9-4.4, p = 0.003) in DIALS; and 1.9 units (95% CI = 0.5-4.2, p = 0.12) in Pre-fALS. There were no significant differences in BMI between SOD1+ carriers and Gene-Negatives in any of the 3 cohorts. Conclusions: Compared to Gene-Negatives, average BMI is lower in asymptomatic C9orf72+ carriers across 3 cohorts while no significant difference was found between Gene-Negatives and SOD1+ carriers.
Assuntos
Esclerose Lateral Amiotrófica , Índice de Massa Corporal , Proteína C9orf72 , Heterozigoto , Superóxido Dismutase-1 , Humanos , Masculino , Feminino , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/diagnóstico , Proteína C9orf72/genética , Superóxido Dismutase-1/genética , Pessoa de Meia-Idade , Adulto , Estudos de Coortes , Genótipo , Expansão das Repetições de DNA/genética , IdosoRESUMO
BACKGROUND AND OBJECTIVES: The term "ALS Reversal" describes patients who initially meet diagnostic criteria for amyotrophic lateral sclerosis (ALS) or had clinical features most consistent with progressive muscular atrophy (PMA) but subsequently demonstrated substantial and sustained clinical improvement. The objective of this genome-wide association study (GWAS) was to identify correlates of this unusual clinical phenotype. METHODS: Participants were recruited from a previously created database of individuals with the ALS Reversal phenotype. Whole-genome sequencing (WGS) data were compared with ethnicity-matched patients with typically progressive ALS enrolled through the CReATe Consortium's Phenotype-Genotype-Biomarker (PGB) study. These results were replicated using an independent ethnically matched WGS data set from Target ALS. Significant results were further explored with available databases of genetic regulatory markers and expression quantitative trait loci (eQTL) analysis. RESULTS: WGS from 22 participants with documented ALS Reversals was compared with the PGB primary cohort (n = 103) and the Target ALS validation cohort (n = 140). Two genetic loci met predefined criteria for statistical significance (two-sided permutation p ≤ 0.01) and remained plausible after fine-mapping. The lead single nucleotide variant (SNV) from the first locus was rs4242007 (primary cohort GWAS OR = 12.0, 95% CI 4.1 to 34.6), which is in an IGFBP7 intron and is in near-perfect linkage disequilibrium with a SNV in the IGFBP7 promoter region. Both SNVs are associated with decreased frontal cortex IGFBP7 expression in eQTL data sets. Notably, 3 Reversals, but none of the typically progressive individuals (n = 243), were homozygous for rs4242007. The importance of the second locus, located near GRIP1, is uncertain given the absence of an associated effect on nearby gene transcription. DISCUSSION: We found a significant association between the Reversal phenotype and an IGFBP7 noncoding SNV that is associated with IGFBP7 expression. This is biologically relevant as IGFBP7 is a reported inhibitor of the insulin growth factor-1 (IGF-1) receptor that activates the possibly neuroprotective IGF-1 signaling pathway. This finding is limited by small sample size but suggests that there may be merit in further exploration of IGF-1 pathway signaling as a therapeutic mechanism for ALS. TRIAL REGISTRATION INFORMATION: This study was registered with ClinicalTrials.gov (NCT03464903) on March 14, 2018. The first participant was enrolled on June 22, 2018.
Assuntos
Esclerose Lateral Amiotrófica , Estudo de Associação Genômica Ampla , Fenótipo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/genética , Estudos de Coortes , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento Completo do GenomaRESUMO
Background and Objectives: In clinical practice, we have observed that patients with Parkinson disease (PD) often have blepharoclonus, but its prevalence is not well described in the literature. Understanding the relative frequencies of blepharoclonus in PD and atypical parkinsonian syndromes may shed light on the diagnostic utility of this clinical sign. We aimed to assess (1) the frequency of blepharoclonus in patients with PD in a single-center cohort; (2) the association of blepharoclonus with disease stage, tremor severity, and non-motor symptoms; and (3) the frequency of blepharoclonus in synucleinopathy vs non-synucleinopathy-associated parkinsonism. Methods: We prospectively enrolled 85 patients, 75 with PD and 10 with atypical parkinsonism. Blepharoclonus was considered present if eyelid fluttering was sustained for >5 seconds after gentle eye closure. For each patient, demographics were collected, and we completed selected questions from the MDS-UPDRS (Unified Parkinson's Disease Rating Scale) part 2, REM Sleep Behavior Disorder Questionnaire, and MDS-UPDRS part 3 tremor assessments and recorded the presence/absence of dyskinesia. Results: 63 of 75 patients with PD (84%) had blepharoclonus. Among the 10 patients with atypical parkinsonism, 5 had synucleinopathy syndromes. Blepharoclonus was present in 3 of 5 patients with synucleinopathy and 0 of 5 patients with non-synucleinopathy-associated parkinsonian syndromes. Discussion: Blepharoclonus is prevalent in our PD cohort, suggesting possible utility as a clinical marker for PD. The absence of blepharoclonus in a patient with parkinsonism may suggest a non-synucleinopathy (e.g., tauopathy). Analysis of a larger cohort of both PD and atypical parkinsonism would be needed to establish whether blepharoclonus distinguishes PD from atypical parkinsonism, or synucleinopathy from non-synucleinopathy.
RESUMO
BACKGROUND: With increasing recognition of the value of incorporating prognostic markers into amyotrophic lateral sclerosis (ALS) trial design and analysis plans, there is a pressing need to understand which among the prevailing clinical and biochemical markers have real value, and how they can be optimally used. METHODS: A subset of patients with ALS recruited through the multi-center Phenotype-Genotype-Biomarker study (clinicaltrials.gov: NCT02327845) was identified as "trial-like" based on meeting common trial eligibility criteria. Clinical phenotyping was performed by evaluators trained in relevant assessments. Serum neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH), urinary p75ECD, plasma microRNA-181, and an array of biochemical and clinical measures were evaluated for their prognostic value. Associations with functional progression were estimated by random-slopes mixed models of ALS functional rating scale-revised (ALSFRS-R) score. Associations with survival were estimated by log-rank test and Cox proportional hazards regression. Potential sample size savings from adjusting for given biomarkers in a hypothetical trial were estimated. FINDINGS: Baseline serum NfL is a powerful prognostic biomarker, predicting survival and ALSFRS-R rate of decline. Serum NfL <40 pg/mL and >100 pg/mL correspond to future ALSFRS-R slopes of â¼0.5 and â¼1.5 points/month, respectively. Serum NfL also adds value to the best available clinical predictors, encapsulated by the European Network to Cure ALS (ENCALS) predictor score. In models of functional decline, the addition of NfL yields â¼25% sample size saving above those achieved by inclusion of either clinical predictors or ENCALS score alone. The prognostic value of serum pNfH, urinary p75ECD, and plasma miR-181ab is more limited. INTERPRETATION: Among the multitude of biomarkers considered, only blood NfL adds value to the ENCALS prediction model and should be incorporated into analysis plans for all ongoing and future ALS trials. Defined thresholds of NfL might also be used in trial design, for enrichment or stratified randomisation, to improve trial efficiency. FUNDING: NIH (U01-NS107027, U54-NS092091). ALSA (16-TACL-242).
Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Ensaios Clínicos como Assunto , Progressão da Doença , Humanos , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/mortalidade , Biomarcadores/sangue , Prognóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Projetos de Pesquisa , Proteínas de Neurofilamentos/sangueRESUMO
Background: With increasing recognition of the value of incorporating prognostic markers into amyotrophic lateral sclerosis (ALS) trial design and analysis plans, there is a pressing need to understand which among the prevailing clinical and biochemical markers have real value, and how they can be optimally used. Methods: A subset of patients with ALS recruited through the multi-center Phenotype-Genotype-Biomarker study (clinicaltrials.gov: NCT02327845) was identified as "trial-like" based on meeting common trial eligibility criteria. Clinical phenotyping was performed by evaluators trained in relevant assessments. Serum neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH), urinary p75ECD, plasma microRNA-181, and an array of biochemical and clinical measures were evaluated for their prognostic value. Associations with functional progression were estimated by random-slopes mixed models of ALS functional rating scale-revised (ALSFRS-R) score. Associations with survival were estimated by log-rank test and Cox proportional hazards regression. Potential sample size savings from adjusting for given biomarkers in a hypothetical trial were estimated. Findings: Baseline serum NfL is a powerful prognostic biomarker, predicting survival and ALSFRS-R rate of decline. Serum NfL <40pg/ml and >100pg/ml correspond to future ALSFRS-R slopes of ~0.5 and 1.5 points/month, respectively. Serum NfL also adds value to the best available clinical predictors, encapsulated by the European Network to Cure ALS (ENCALS) predictor score. In models of functional decline, the addition of NfL yields ~25% sample size saving above those achieved by inclusion of either clinical predictors or ENCALS score alone. The prognostic value of serum pNfH, urinary p75ECD, and plasma miR-181ab is more limited. Interpretation: Among the multitude of biomarkers considered, only blood NfL adds value to the ENCALS prediction model and should be incorporated into analysis plans for all ongoing and future ALS trials. Defined thresholds of NfL might also be used in trial design, for enrichment or stratified randomisation, to improve trial efficiency. Funding: NIH (U01-NS107027, U54-NS092091). ALSA (16-TACL-242).
RESUMO
Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.
Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Fenótipo , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Biomarcadores/metabolismoRESUMO
BACKGROUND: Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder leading to muscle weakness and respiratory failure. Arimoclomol, a heat-shock protein-70 (HSP70) co-inducer, is neuroprotective in animal models of amyotrophic lateral sclerosis, with multiple mechanisms of action, including clearance of protein aggregates, a pathological hallmark of sporadic and familial amyotrophic lateral sclerosis. We aimed to evaluate the safety and efficacy of arimoclomol in patients with amyotrophic lateral sclerosis. METHODS: ORARIALS-01 was a multinational, randomised, double-blind, placebo-controlled, parallel-group trial done at 29 centres in 12 countries in Europe and North America. Patients were eligible if they were aged 18 years or older and met El Escorial criteria for clinically possible, probable, probable laboratory-supported, definite, or familial amyotrophic lateral sclerosis; had an ALS Functional Rating Scale-Revised score of 35 or more; and had slow vital capacity at 70% or more of the value predicted on the basis of the participant's age, height, and sex. Patients were randomly assigned (2:1) in blocks of 6, stratified by use of a stable dose of riluzole or no riluzole use, to receive oral arimoclomol citrate 1200 mg/day (400 mg three times per day) or placebo. The Randomisation sequence was computer generated centrally. Investigators, study personnel, and study participants were masked to treatment allocation. The primary outcome was the Combined Assessment of Function and Survival (CAFS) rank score over 76 weeks of treatment. The primary outcome and safety were analysed in the modified intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03491462, and is completed. FINDINGS: Between July 31, 2018, and July 17, 2019, 287 patients were screened, 245 of whom were enrolled in the trial and randomly assigned. The modified intention-to-treat population comprised 239 patients (160 in the arimoclomol group and 79 in the placebo group): 151 (63%) were male and 88 (37%) were female; mean age was 57·6 years (SD 10·9). CAFS score over 76 weeks did not differ between groups (mean 0·51 [SD 0·29] in the arimoclomol group vs 0·49 [0·28] in the placebo group; p=0·62). Cliff's delta comparing the two groups was 0·039 (95% CI -0·116 to 0·194). Proportions of participants who died were similar between the treatment groups: 29 (18%) of 160 patients in the arimoclomol group and 18 (23%) of 79 patients in the placebo group. Most deaths were due to disease progression. The most common adverse events were gastrointestinal. Adverse events were more often deemed treatment-related in the arimoclomol group (104 [65%]) than in the placebo group (41 [52%]) and more often led to treatment discontinuation in the arimoclomol group (26 [16%]) than in the placebo group (four [5%]). INTERPRETATION: Arimoclomol did not improve efficacy outcomes compared with placebo. Although available biomarker data are insufficient to preclude future strategies that target the HSP response, safety data suggest that a higher dose of arimoclomol would not have been tolerated. FUNDING: Orphazyme.