Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Small ; 20(26): e2306707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247201

RESUMO

In living organisms, carotenoids are incorporated in biomembranes, remarkably modulating their mechanical characteristics, fluidity, and permeability. Significant resonance enhancement of Raman optical activity (ROA) signals of carotenoid chiral aggregates makes resonance ROA (RROA), a highly selective tool to study exclusively carotenoid assemblies in model membranes. Hence, RROA is combined with electronic circular dichroism (ECD), dynamic light scattering (DLS), molecular dynamics, and quantum-chemical calculations to shed new light on the carotenoid aggregation in dipalmitoylphosphatidylcholine (DPPC) liposomes. Using representative members of the carotenoid family: apolar α-carotene and more polar fucoxanthin and zeaxanthin, the authors demonstrate that the stability of carotenoid aggregates is directly linked with their orientation in membranes and the monomer structures inside the assemblies. In particular, polyene chain distortion of α-carotene molecules is an important feature of J-aggregates that show increased orientational freedom and stability inside liposomes compared to H-assemblies of more polar xanthophylls. In light of these results, RROA emerges as a new tool to study active compounds and drugs embedded in membranes.


Assuntos
Carotenoides , Lipossomos , Análise Espectral Raman , Análise Espectral Raman/métodos , Carotenoides/química , Lipossomos/química , Simulação de Dinâmica Molecular , Dicroísmo Circular , 1,2-Dipalmitoilfosfatidilcolina/química , Xantofilas/química
2.
Langmuir ; 40(20): 10600-10614, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38721840

RESUMO

Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.


Assuntos
Retardadores de Chama , Difração de Raios X , Retardadores de Chama/metabolismo , Halogenação , Membrana Celular/metabolismo , Membrana Celular/química
3.
Langmuir ; 35(27): 9084-9092, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31246038

RESUMO

Drug delivery in cationic liposomes seems to be a promising therapeutic approach in cancer treatment. The rational design of the positively charged lipid vesicles as anticancer drug carriers should be supported by a detailed analysis of the interactions of the carrier components with anticancer drugs. In the present work, 2-hydroxyoleic acid (2OHOA; Minerval), a membrane lipid therapy drug, was incorporated into positively charged mono- and bilayer membranes containing 1-palmitoyl-2-oleoyl- sn-glycero-3-ethylphosphocholine (EPOPC), the synthetic cationic lipid, and 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC). The intermolecular interactions, fluidity, and miscibility of the studied monolayers were analyzed by utilizing Langmuir balance experiments. The morphology of two-dimensional films was inspected using a Brewster angle microscopy technique. The properties of the liposomes were investigated by dynamic light scattering (DLS) and zeta potential measurements, steady-state fluorescence anisotropy experiments, and the spectrofluorimetric titration of calcein-encapsulated vesicles with a lysis-inducing agent. According to the collected results, 2OHOA intercalation into films of pure phospholipids or a binary EPOPC/DOPC film is thermodynamically favorable. Surprisingly, no significant effect of the presence of unsaturated 2OHOA chains on the EPOPC/DOPC monolayer order was observed. The experiments carried out for 2OHOA-inserted cationic EPOPC/DOPC (1:4) liposomes indicate effective incorporation of the drug into the liposome bilayer and the formation of stable vesicles without affecting their properties markedly. On the basis of the obtained results, EPOPC/DOPC/2OHOA cationic liposomes with 15% 2OHOA content in the phospholipid bilayer seem to be the most suitable for potential biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas/química , Lipídeos/química , Neoplasias/química , Ácidos Oleicos/química , Cátions/química , Humanos , Lipossomos/química , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 35(17): 5944-5956, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30942590

RESUMO

Phosphatidic acids (PAs) have many biological functions in biomembranes, e.g., they are involved in the proliferation, differentiation, and transformation of cells. Despite decades of research, the molecular understanding of how PAs affect the properties of biomembranes remains elusive. In this study, we explored the properties of lipid bilayers and monolayers composed of PAs and phosphatidylcholines (PCs) with various acyl chains. For this purpose, the Langmuir monolayer technique and atomistic molecular dynamics (MD) simulations were used to study the miscibility of PA and PC lipids and the molecular organization of mixed bilayers. The monolayer experiments demonstrated that the miscibility of membrane components strongly depends on the structure of the hydrocarbon chains and thus on the overall lipid shape. Interactions between PA and PC molecules vary from repulsive, for systems containing lipids with saturated and unsaturated acyl tails (strongly positive values of the excess free energy of mixing), to attractive, for systems in which all lipid tails are saturated (negative values of the excess free energy of mixing). The MD simulations provided atomistic insight into polar interactions (formation of hydrogen bonds and charge pairs) in PC-PA systems. H-bonding between PA monoanions and PCs in mixed bilayers is infrequent, and the lipid molecules interact mainly via electrostatic interactions. However, the number of charge pairs significantly decreases with the number of unsaturated lipid chains in the PA-PC system. The PA dianions weakly interact with the zwitterionic lipids, but their headgroups are more hydrated as compared to the monoanionic form. The acyl chains in all PC-PA bilayers are more ordered compared to single-component PC systems. In addition, depending on the combination of lipids, we observed a deeper location of the PA phosphate groups compared to the PC phosphate groups, which can alter the presentation of PAs for the peripheral membrane proteins, affecting their accessibility for binding.

5.
Anal Chem ; 90(17): 10179-10186, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30074379

RESUMO

Mid-infrared absorption spectroscopy has been used extensively to study the molecular properties of cell membranes and model systems. Most of these studies have been carried out on macroscopic samples or on samples a few micrometers in size, due to constraints on sensitivity and spatial resolution with conventional instruments that rely on far-field optics. Properties of membranes on the scale of nanometers, such as in-plane heterogeneity, have to date eluded investigation by this technique. In the present work, we demonstrate the capability to study single bilayers of phospholipids with near-field mid-infrared spectroscopy and imaging and achieve a spatial resolution of at least 40 nm, corresponding to a sample size of the order of a thousand molecules. The quality of the data and the observed spectral features are consistent with those reported from measurements of macroscopic samples and allow detailed analysis of molecular properties, including orientation and ordering of phospholipids. The work opens the way to the nanoscale characterization of the biological membranes for which phospholipid bilayers serve as a model.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Espectrofotometria Infravermelho/métodos , Limite de Detecção , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Langmuir ; 34(17): 5097-5105, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29653049

RESUMO

An increasing number of bacterial infections and the rise in antibiotic resistance of a number of bacteria species forces one to search for new antibacterial compounds. The latter facts motivate the investigations presented herein and are aimed at studying the influence of a cationic lipid, 1-palmitoyl-2-oleoyl- sn-glycero-3-ethylphosphocholine (EPOPC), on model (mono- and bilayer) membranes. The monolayer experiments involved the analysis of the interactions of EPOPC with bacterial membrane lipids in one component and mixed systems as well as Brewster angle microcopy studies. The properties of liposomes were analyzed based on the results of dynamic light scattering (DLS) and zeta potential measurements as well as on the experiments concerning the release of calcein entrapped in liposomes after titration with surfactant solution and steady-state fluorescence anisotropy of DPH. The obtained results evidenced that EPOPC, even at low concentrations, strongly changes organization of model systems making them less condensed. Moreover, EPOPC decreases the hydrodynamic diameter of liposomes, increases their zeta potential, and destabilizes model membranes, increasing their fluidity and permeability. Also, the in vitro tests performed on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) strains prove that EPOPC has some bacteriostatic properties which seem to be stronger toward Gram-negative than Gram-positive bacteria. All these findings allow one to conclude that EPOPC mode of action may be directly connected with the interactions of EPOPC molecules with bacterial membranes.


Assuntos
Membrana Celular/efeitos dos fármacos , Membranas Artificiais , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Cátions , Lipossomos/química , Lipídeos de Membrana/química
7.
Biochim Biophys Acta ; 1858(4): 836-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26777770

RESUMO

The interactions between parabens (PBs) and lipid components of mammalian and bacterial cell membranes were investigated in model systems of Langmuir monolayers. Me-, Et-, Pr- and Bu-paraben studied in this paper are frequently applied as cosmetics and food preservatives, since they possess broad antimicrobial activity. The mode of PB action is connected with their incorporation into the membrane of bacterial organisms, however; it is not known what is the role of the respective lipid species in this mechanism. This problem is crucial to understand the differences in paraben activity toward individual microorganisms and to shed the light onto the problem of PB cytotoxicity reported in studies on mammalian cells. In this paper, the mentioned aspects were investigated with application of the Langmuir monolayer technique complemented with BAM and GIXD. Our experiments revealed that the influence of PBs depends on their chemical structure, solution concentration and on the class of lipid. The strongest modification of the monolayer characteristics, leading to its collapse at low surface pressure, occurred in the presence of BuPB, having the largest chain. PBs interact preferentially with the monolayers possessing low degree of condensation, whereas for LC state, the effect was weaker and observed only as modification of the 2D unit cells. In the model systems, PBs interact with phospholipids characteristic for mammalian membranes (phosphatidylcholine) stronger than with bacterial (phosphatidylglycerol and cardiolipin). This strong influence of parabens on the model systems composed of animal lipids may explain cytotoxic activity of these preservatives.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Parabenos/química , Fosfolipídeos/química , Ar , Animais , Membrana Celular/metabolismo , Conformação Molecular , Parabenos/metabolismo , Fosfolipídeos/metabolismo , Pressão , Propriedades de Superfície , Água/química
8.
Biochim Biophys Acta ; 1858(4): 756-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26806160

RESUMO

Bisphenol A (BPA) and other bisphenols constitute a class of organic pollutants, which because of their estrogenic properties, low dose activity and bioaccumulation pose considerable risk for public health as well as for the environment. Accumulated in the sediment bisphenols can endanger the decomposers' populations being incorporated into their cellular membranes; however, the mechanism of their membrane activity is unknown. Therefore, to study these phenomena we applied anionic phospholipid Langmuir monolayers as simple but versatile models of decomposers biomembranes. Phosphatidylglycerols and cardiolipins are not only the main components of bacterial membranes but also of crucial importance in mitochondrial and thylakoid membranes in eukaryotic cells. In our investigations we applied five compounds of the bisphenol class most commonly detected in the environment. To characterize the bisphenols-model membrane interactions we applied multiple mutually independent methods of physical chemistry; namely: the Langmuir monolayer technique, surface potential measurements, Brewster angle microscopy for the visualization of the monolayers' texture and grazing incidence X-ray diffraction for the discussion of the phospholipids packing within the monolayers. Our studies indicated that all the investigated bisphenols interact with the model membrane, but the strength of the interactions is dependent on the bisphenol structure and hydrophobicity and the fluidity of the model membranes. We proved that bisphenol S often treated as the least toxic BPA analog can also be incorporated to the model membranes changing their structure and fluidity.


Assuntos
Compostos Benzidrílicos/química , Membrana Celular/química , Poluição Ambiental , Estrogênios/química , Fenóis/química , Ânions/química , Compostos Benzidrílicos/toxicidade , Estrogênios/toxicidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Fenóis/toxicidade , Fosfolipídeos/química
9.
Biochim Biophys Acta Biomembr ; 1859(12): 2402-2412, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28939381

RESUMO

High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) are persistent organic pollutants which due to their limited biodegradability accumulate in soils where their increased presence can lead to the impoverishment of the decomposer organisms. As very hydrophobic PAHs easily penetrate cellular membranes of soil bacteria and can be incorporated therein, changing the membrane fluidity and other functions which in consequence can lead to the death of the organism. The structure and size of PAH molecule can be crucial for its membrane activity; however the correlation between PAH structure and its interaction with phospholipids have not been investigated so far. In our studies we applied phospholipid Langmuir monolayers as model bacterial membranes and investigated how the incorporation of six structurally different PAH molecules change the membrane texture and physical properties. In our studies we registered surface pressure and surface potential isotherms upon the monolayer compression, visualized the monolayer texture with the application of Brewster angle microscopy and searched the ordering of the film-forming molecules with molecular resolution with the application of grazing incidence X-ray diffraction (GIXD) method. It turned out that the phospholipid-PAH interactions are strictly structure dependent. Four and five-ring PAHs of the angular or cluster geometry can be incorporated into the model membranes changing profoundly their textures and fluidity; whereas linear or large cluster PAHs cannot be incorporated and separate from the lipid matrix. The observed phenomena were explained based on structural similarities of the applied PAHs with membrane steroids and hopanoids.


Assuntos
Membrana Celular/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Lipossomas Unilamelares/química , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Cardiolipinas/química , Membrana Celular/química , Cinética , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes do Solo/toxicidade , Relação Estrutura-Atividade , Termodinâmica
10.
Biochim Biophys Acta Biomembr ; 1859(6): 1164-1171, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28343956

RESUMO

In this work Langmuir monolayer experiments were performed to analyze the effect of Cd2+ ions and their mixtures with synthetic auxin (1-naphthaleneacetic acid - NAA) on lipid films. These investigations were motivated by the fact that auxins act effectively as the agents improving the removal of metal ions from contaminated water and soil by plants (phytoextraction), and although their mechanism of action in this area is still unclear, it was suggested that it can be membrane-related. The experiments were done for one component (1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPC; 1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC; 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) - DPPG) monolayers and mixed (DPPG/DOPC and DPPG/DPPC) films treated as model of plant leaves membranes. The monolayer properties were analyzed based on the surface pressure-area isotherms obtained during film compression, stability measurements and Brewster angle microcopy studies. The collected results together with the data presented in literature evidenced that both metal ions and auxins modify lipid system properties and by using them in a combination it is possible to weaken the influence of sole metal ions on membrane organization. This seems to be in agreement with the hypothesis that the role of plant growth regulators in increasing phytoextraction effectiveness may be membrane-related. However, further experiments are required to find possible correlations between the type and concentration of metal ion, composition of membrane or structural elements in auxin molecule and observed alterations in membrane properties.


Assuntos
Biodegradação Ambiental , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Ácidos Indolacéticos/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Lipossomas Unilamelares/química , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Modelos Biológicos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Folhas de Planta/química , Plantas/química , Tensão Superficial , Termodinâmica , Água/química
11.
Mol Pharm ; 14(4): 1057-1070, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28234487

RESUMO

Itraconazole (ITZ) is an antifungal agent used clinically to treat mycotic infections. However, its therapeutic effects are limited by low solubility in aqueous media. Liposome-based delivery systems (LDS) have been proposed as a delivery mechanism for ITZ to alleviate this problem. Furthermore, PEGylation, the inclusion in the formulation of a protective "stealth sheath" of poly(ethylene glycol) around carrier particles, is widely used to increase circulation time in the bloodstream and hence efficacy. Together, these themes highlight the importance of mechanistic and structural understanding of ITZ incorporation into liposomes both with and without PEGylation because it can provide a potential foundation for the rational design of LDS-based systems for delivery of ITZ, using alternate protective polymers or formulations. Here we have combined atomistic simulations, cryo-TEM, Langmuir film balance, and fluorescence quenching experiments to explore how ITZ interacts with both pristine and PEGylated liposomes. We found that the drug can be incorporated into conventional and PEGylated liposomes for drug concentrations up to 15 mol % without phase separation. We observed that, in addition to its protective properties, PEGylation significantly increases the stability of liposomes that host ITZ. In a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer without PEGylation, ITZ was found to reside inside the lipid bilayer between the glycerol and the double-bond regions of POPC, adopting a largely parallel orientation along the membrane surface. In a PEGylated liposome, ITZ partitions mainly to the PEG layer. The results provide a solid basis for further development of liposome-based delivery systems.


Assuntos
Antifúngicos/química , Itraconazol/química , Membranas/química , Polietilenoglicóis/química , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Fluorescência , Bicamadas Lipídicas/química , Lipossomos/química , Fosfatidilcolinas/química , Polímeros/química , Substâncias Protetoras/química , Solubilidade , Propriedades de Superfície
12.
Biochim Biophys Acta ; 1848(8): 1639-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25960185

RESUMO

The disorders in cholesterol biosynthesis pathway and various diseases manifest in the accumulation of cholesterol precursors in the human tissues and cellular membranes. In this paper the effect of desmosterol--one of cholesterol precursors--on model lipid membranes was studied. The investigations were performed for binary SM/desmo and POPC/desmo and ternary SM/POPC/desmo monolayers. Moreover, the experiments based on the gradual substitution of cholesterol by desmosterol in SM/POPC/chol=1:1:1 system were done. The obtained results allowed one to conclude that desmosterol is of lower domains promoting and stabilizing properties and packs less tightly with the lipids in monolayers. Moreover, desmosterol probably could replace cholesterol in model membranes, but only at its low proportion in the system (2%), however, at a higher degree of cholesterol substitution a significant decrease of the monolayer stability and packing and alterations in the film morphology were detected. The results collected in this work together with those from previous experiments allowed one to analyze the effect of a double bond in the sterol side chain as well as its position in the ring system on membrane activity of the molecule and to verify Bloch hypothesis.


Assuntos
Desmosterol/química , Bicamadas Lipídicas , Membranas Artificiais , Colesterol/química , Desmosterol/metabolismo , Estrutura Molecular , Fosfatidilcolinas/química , Esfingomielinas/química , Relação Estrutura-Atividade
14.
Langmuir ; 32(16): 4095-102, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27046325

RESUMO

The two synthetic sterol-phospholipid hybrids DCholPC and PCholPC were investigated in monolayers at the air/water interface. Study was based on π-A isotherm analysis complemented with application of grazing incidence X-ray diffraction. It was found that both compounds are capable of forming stable, highly condensed monolayers of a surface characteristics typical for sterols. GIXD studies show that the crystallographic area for DCholPC monolayer is very similar to that found for cholesterol (37.1 vs 38.0 Å(2)), while for PCholPC (28.8 Å(2)) it is significantly smaller as compared to area for the mixed Chol/DPPC 2/1 monolayer (33.4 Å(2)). In our study the problem of interactions between investigated sterol-phospholipid hybrids and natural membrane lipid components was for the first time analyzed in planar lipid systems. Studies on mixed monolayers showed that both hybrids, similarly to cholesterol, reveal a condensing effect toward DPPC acyl chains; however, DCholPC having two steroid moieties in the molecule was found to be more efficient. On the other hand, the sterol moiety and the hydrocarbon chain of PCholPC molecule are packed in the 2D crystalline phase extremely tight. Our studies showed that the investigated compounds can be applied as biocompatible components of stable liposomes.

15.
Langmuir ; 32(19): 5004-18, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27115556

RESUMO

Interactions between polyethylenimines (PEIs) and phospholipid membranes are of fundamental importance for various biophysical applications of these polymers such as gene delivery. Despite investigations into the nature of these interactions, their molecular basis remains poorly understood. In this article, we combined experimental methods and atomistic molecular dynamics (MD) simulations to obtain comprehensive insight into the effect of linear and branched PEIs on zwitterionic and anionic bilayers used as simple models of mammalian cellular membranes. Our results show that PEIs adsorb only partially on the surface of zwitterionic membranes by forming hydrogen bonds to the lipid headgroups, whereas a large part of the polymer chains dangles freely in the aqueous phase. In contrast, PEIs readily adhere to and insert into the anionic membrane. The attraction of the polymer chains to the membrane is due to electrostatic interactions as well as hydrogen bonding between the amine groups of PEI and the phosphate groups of lipids. These interactions were found to induce a substantial reorganization of the bilayer in the polymer vicinity due to the reorientation of lipid molecules. The lipid headgroups were pulled toward the center of the membrane, which can facilitate transmembrane translocations of anionic lipids. Furthermore, the PEI-lipid interactions affect the stability of liposomal dispersions, but we did not see any evidence of disruption of the vesicular structures into small fragments at polymer concentrations typically used in gene therapy. Our results provide a detailed molecular-level description of the lipid organization in the membrane in the presence of polycations that can be useful in understanding their mechanisms of in vitro and in vivo cytotoxicity.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Polietilenoimina/química , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular , Água/química
16.
Langmuir ; 31(26): 7364-73, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26061794

RESUMO

Three cholesterol precursors-desmosterol, zymosterol, and lanosterol-were comprehensively characterized in monolayers formed at the air/water interface. The studies were based on registration of the surface pressure (π)-area (A) isotherms complemented with in situ analysis performed with application of modern physicochemical techniques: grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy (BAM). In this approach we were interested in the correlation between molecular structures of the studied sterols found in the cholesterol biosynthetic pathway and their membrane properties. Our results revealed that only desmosterol behaves in Langmuir monolayers comparably to cholesterol, the molecules of which arrange in the monolayers into a hexagonal lattice, while the two remaining sterols possess extremely different properties. We found that molecules of both zymosterol and lanosterol are organized on the water surface in the two-dimensional oblique unit cells despite the fact that they are oriented perpendicular to the monolayer plane. The comparison of chemical structures of the investigated sterols leads to the conclusion that the only structural motive that can be responsible for such unusual behavior is the double bond in the B sterol ring, which is located in desmosterol in a different position from in the other two sterols. This issue, which was neglected in the scientific literature, seems to have crucial importance for sterol activity in biomembranes. We showed that this structural modification in sterol molecules is directly responsible for their adaptation to proper functioning in biomembranes.


Assuntos
Microscopia , Esteróis/química , Difração de Raios X , Isomerismo , Modelos Moleculares , Conformação Molecular
17.
Biochim Biophys Acta ; 1828(6): 1415-23, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23399521

RESUMO

In this work the properties of monomolecular films composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (SOPE) and cholesterol, differing in lipid proportion, were investigated in the context of domain formation in the inner leaflet of membrane. To perform comprehensive analysis of the studied model systems the Langmuir monolayer experiments were performed in combination with Brewster angle microscopy (BAM) and Grazing incidence X-ray diffraction (GIXD) techniques. The analysis of the collected data proved non-ideal behavior of the investigated films. It was found that cholesterol at its lower concentration in the system (10%) is of disturbing influence on SOPE film. Further addition of cholesterol into phospholipids film (33, 50, and 67% of cholesterol) induces an ordering effect on SOPE acyl chains and provokes the formation of sterol-poor and sterol-rich domains which stoichiometry is independent of monolayer composition. The foregoing findings allow one to conclude that in cytosolic leaflet of membrane the lipids may segregate into domains of various cholesterol contents which depending on their composition may play different roles in membrane functioning.


Assuntos
Estruturas da Membrana Celular/química , Colesterol/química , Membrana Eritrocítica/química , Membranas Artificiais , Microscopia de Polarização , Fosfatidiletanolaminas/química , Difração de Raios X , Estruturas da Membrana Celular/ultraestrutura , Membrana Eritrocítica/ultraestrutura , Humanos , Pressão , Propriedades de Superfície
18.
Biochim Biophys Acta ; 1828(11): 2700-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23906729

RESUMO

In this work we have performed a comparative study on the effect of antineoplastic ether lipid-edelfosine (ED), its natural analogs - Platelet Activating Factor (PAF) and its precursor (lyso-PAF), both lacking anticancer properties, on cholesterol/phosphatidylcholine (Chol/PC) monolayers, serving as model membranes. Since all the above ether lipids are membrane active, it can be expected that their effect on membranes may differentiate their biological activity. Our investigations were aimed at studying potential relationship of the effect of ED, PAF and lyso-PAF on model membranes, differing in condensation. We have modified molecular packing of Chol/PC model systems either by increasing the level of sterol in the system or changing the structure of PC, while keeping the same sterol content. Additionally, we have performed a detailed comparison of the miscibility of ED, PAF and lyso-PAF with various membrane lipids. The collected data evidenced that all the investigated ether lipids influence Chol/PC films in the same way; however, in a different magnitude. Moreover, the interactions of ED, PAF and lyso-PAF with model membranes were the strongest at the highest level of sterol in the system. A thorough analysis of the obtained results has proved that the effect of the investigated ether lipids on membranes is not dependent on the condensation of the system, but it is strongly determined by the concentration of cholesterol. Since ED was found to interact with model membranes stronger than PAF and lyso-PAF, we have suggested that this fact may contribute to differences in cytotoxicity of these compounds.


Assuntos
Colesterol/metabolismo , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Fator de Ativação de Plaquetas/metabolismo , Éter , Fosfatidilcolinas/metabolismo
19.
Biochim Biophys Acta Biomembr ; 1866(2): 184254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989397

RESUMO

Cationic lipids are synthetic compounds of amphiphilic character used in Drug Delivery Systems (DDS), especially in gene therapy, as the carriers of genetic material. As it is known, the main limitation of the application of cationic lipids in DDS is their high cytotoxicity after in vivo administration and low bioactivity. This is probably related to not fully known the relationship between the lipid structure and its activity as well as the mechanism of lipofection or drug delivery. Therefore, in this work we determined the impact of a selected group of cationic lipids - triesters of phosphatidylcholine (Et-PCs) - differing in their hydrophobic structure on model mammalian membranes. In the research, as model systems, Langmuir monolayers and liposomes were applied. It was shown that the incorporation of Et-PCs into model mammalian membranes weakens interactions between lipids, causing the increase of fluidity, disordering degree and permeability of membrane. The destabilization of the membrane in this way can facilitate the entry of drugs, carried inside cationic liposomes, into the pathological cell. Moreover, the studies prove that the structure of the hydrophobic part of cationic lipids also affects the properties of lipid membranes.


Assuntos
Lipossomos , Fosfatidilcolinas , Lipossomos/química , Fosfatidilcolinas/química , Sistemas de Liberação de Medicamentos
20.
Biochim Biophys Acta ; 1818(7): 1745-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22465064

RESUMO

To properly design and investigate new antibacterial drugs a detailed description of the organization of bacterial membrane is highly important. Therefore in this work we performed a comprehensive characteristic of the Langmuir monolayers composed of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) mixed in a wide range of composition and treated as an artificial cytoplasmic layer of bacterial membrane. To obtain detailed information on the properties of these films we combined the analysis of the surface pressure-area curves with the surface potential measurements, Brewster Angle Microscopy studies and Grazing Incidence X-ray Diffraction experiments. It was found that the investigated phospholipids mix nonideally in the monolayers and that the most favorable packing of molecules occurs at their equimolar proportion. This is directly connected with the formation of hydrogen bonds between both types of molecules in the system. All the collected experimental data evidenced that dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidylglycerol (DPPG) form highly ordered associates of fixed (DPPE:DPPG 1:1) stoichiometry. The obtained results allow one to conclude a nonuniform distribution of lipids in bacterial membranes and the existence of domains composed of the investigated phospholipids. The latter seems to be of great importance in the perspective of further studies on the mechanism of action of antibacterial agents.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , Bactérias/química , Membranas Artificiais , Microscopia/métodos , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA