Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Am Chem Soc ; 146(1): 1174-1184, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153040

RESUMO

Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.

2.
J Am Chem Soc ; 145(9): 5174-5182, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36757130

RESUMO

Layered Li-rich oxides (LROs) that exhibit anionic and cationic redox are extensively studied due to their high energy storage capacities. However, voltage hysteresis, which reduces the energy conversion efficiency of the battery, is a critical limitation in the commercial application of LROs. Herein, using two Li2RuO3 (LRO) model materials with C2/c and P21/m symmetries, we explored the relationship between voltage hysteresis and the electronic structure of Li2RuO3 by neutron diffraction, in situ X-ray powder diffraction, X-ray absorption spectroscopy, macro magnetic study, and electron paramagnetic resonance (EPR) spectroscopy. The charge-transfer band gap of the LRO cathode material with isolated eg electron filling decreases, reducing the oxidation potential of anion redox and thus displaying a reduced voltage hysteresis. We further synthesized Mn-based Li-rich cathode materials with practical significance and different electron spin states. Low-spin Li1.15Ni0.377Mn0.473O2 with isolated eg electron filling exhibited a reduced voltage hysteresis and high energy conversion efficiency. We rationalized this finding via density functional theory calculations. This discovery should provide critical guidance in designing and preparing high-energy layered Li-rich cathode materials for use in next-generation high-energy-density Li-ion batteries based on anion redox activity.

3.
J Am Chem Soc ; 145(20): 11140-11150, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161344

RESUMO

High-entropy solid-solution alloys have generated significant interest in energy conversion technologies. However, structurally ordered high-entropy intermetallic (HEI) nanoparticles (NPs) have been rarely reported in electrocatalysis applications. Here, we demonstrate structurally ordered PtIrFeCoCu HEI (PIFCC-HEI) NPs with extremely superior performance for both oxygen reduction reaction (ORR) and H2/O2 fuel cells. The PIFCC-HEI NPs show an average diameter of 6 nm. Atomic structural characterizations including atomic-resolution energy-dispersive spectroscopy (EDS) mapping technology confirm the ordered intermetallic structure of PIFCC-HEI NPs. As an electrocatalyst for ORR, the PIFCC-HEI/C achieves an ultrahigh mass activity of 7.14 A mgnoble metals-1 at 0.85 V and extraordinary durability over 60 000 potential cycles. Moreover, the fuel cell assembled with PIFCC-HEI/C as the cathode delivers an ultrahigh peak power density of 1.73 W cm-2 at a back pressure of 1.0 bar and almost no working voltage decay after 80 h operation, certifying the top-level performance among reported fuel cells. Theoretical calculations combined with experimental results reveal that the superior performance of PIFCC-HEI/C for ORR and fuel cells is attributed to its ultrahigh-activity facets. Especially, the (001) facet affords the lowest activation barriers for the rate-limiting step, the optimal downshift of the d-band center, and more efficient regulation of electron structures for ORR. This work not only opens up a new avenue for the fabrication of high-activity facets in the catalysts but also highlights structurally ordered HEI NPs as sufficiently effective catalysts in practical fuel cells and other potential energy-related applications.

4.
Inorg Chem ; 62(29): 11350-11359, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37440672

RESUMO

Low-dimensional hybrid copper(I) halides attract considerable attention in the field of light emissions. In this work, we obtained the centimeter-sized single crystal of 1,3-propanediamine copper(I) iodide (PDACuI3) with a solvent evaporation method. The single crystal X-ray diffraction of PDACuI3 reveals that the [CuI4] tetrahedra form the corner-connected chains separated by PDAs, forming a one-dimensional structure with an orthorhombic space group of Pbca. The band gap is determined to be 4.03 eV, and the room temperature photoluminescence (PL) quantum yield is determined to be 26.5%. The thermal quenching and negative thermal quenching of emission are observed via temperature-dependent PL spectra, and our study shows that the intermediate nonradiative state below the self-trapped exciton state may get involved in these temperature-dependent behaviors. The X-ray scintillation performance of PDACuI3 single crystals is also evaluated, and the relative light output renewed to 94.3% of the fresh one after a low-temperature annealing. On the basis of our results, PDACuI3 single crystals provide nontoxicity and renewable scintillation performance, thus showing potential application in the area of low-cost radiation detectors.

5.
Arch Insect Biochem Physiol ; 114(2): 1-16, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37533191

RESUMO

The Asian corn borer (Ostrinia furnacalis) is an important agricultural pest causing serious damage to economic crops, such as corn and sorghum. The gut is the first line of defense against pathogens that enter through the mouth. Staphylococcus aureus was used to infect the O. furnacalis midgut to understand the midgut immune mechanism against exogenous pathogens to provide new ideas and methods for the prevention and control of O. furnacalis. A sequencing platform was used for genome assembly and gene expression. The unigene sequences were annotated and functionally classified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Significant differences were found in the induced expression profiles before and after infection. Some differentially expressed genes have important relations with lipid metabolism and immune mechanism, suggesting that they play an important role in the innate immune response of O. furnacalis. Furthermore, quantitative real-time polymerase chain reaction assay was used to identify the key genes involved in the signaling pathway, and the expression patterns of these key genes were confirmed. The results could help study the innate immune system of lepidopteran insects and provide theoretical support for the control of related pests and the protection of beneficial insects.


Assuntos
Infecções Bacterianas , Mariposas , Animais , Zea mays , Mariposas/genética , Perfilação da Expressão Gênica/métodos , Insetos
7.
Arch Insect Biochem Physiol ; 111(4): e21955, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35927931

RESUMO

Peptidoglycan recognition proteins (PGRPs) recognize invading microbes via detecting peptidoglycans from microbial cell walls. PGRPs are highly conserved from insects to vertebrates and all play roles during the immune defensive response. Ten putative PGRPs have been identified through transcriptome analysis in the Asian corn borer, Ostrinia furnacalis (Guenée). Whereas, the biochemical functions of most of them have not yet been elucidated. In this study, we found PGRP6 messenger RNA exhibited extremely high expression levels in the midgut, and its transcript level increased dramatically upon bacterial infection. Moreover, the enzyme-linked immunosorbent assay indicated recombinant PGRP6 exhibited a strong binding affinity to peptidoglycans from Micrococcus luteus and Bacillus subtilis, which could agglutinate M. luteus and yeast Pichia pastoris. Additionally, we demonstrated that PGRP6 was involved in the pathway of antimicrobial peptides synthesis, but could not enhance encapsulation and melanization of hemocytes. Overall, our results indicated that O. furnacalis PGRP6 serves as a pattern recognition receptor and detects peptidoglycans from microbes to initiate the immune response.


Assuntos
Mariposas , Zea mays , Animais , Mariposas/genética , Mariposas/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata , Peptidoglicano
8.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955502

RESUMO

C-type lectins (CTLs) are widely distributed in mammals, insects, and plants, which act as pattern recognition receptors (PRRs) to recognize pathogens and initiate immune responses. In this study, we identified a C-type lectin gene called BmIML-2 from the silkworm Bombyx mori. Its open reading frame (ORF) encodes 314 amino acids, which contain dual tandem C-type lectin-like domain (CTLD). BmIML-2 is highly expressed in the fat body and is significantly induced at 24 h after BmNPV infection. Moreover, overexpression of BmIML-2 dramatically inhibited the proliferation of BmNPV, and knockdown assay via siRNA further validated the inhibition of BmIML-2 on viral proliferation. In addition, transcript level detection of apoptosis-related genes and observation of apoptosis bodies implied that overexpression of BmIML-2 promoted BmNPV-induced apoptosis. Immunofluorescence analysis indicated that BmIML-2 distributed throughout the cytoplasm and was slightly concentrated in the cell membrane. Taken together, our results suggest that BmIML-2 could inhibit in the proliferation of BmNPV by facilitating cell apoptosis.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Apoptose , Bombyx/genética , Proliferação de Células , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Mamíferos/metabolismo , Nucleopoliedrovírus/genética
9.
J Am Chem Soc ; 143(41): 17117-17127, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34554733

RESUMO

The development of sufficiently effective catalysts with extremely superior performance for electrocatalytic hydrogen production still remains a formidable challenge, especially in acidic media. Here, we report ultrasmall high-entropy alloy (us-HEA) nanoparticles (NPs) with the best-level performance for hydrogen evolution reaction (HER). The us-HEA (NiCoFePtRh) NPs show an average diameter of 1.68 nm, which is the smallest size in the reported HEAs. The atomic structure, coordinational structure, and electronic structure of the us-HEAs were comprehensively clarified. The us-HEA/C achieves an ultrahigh mass activity of 28.3 A mg-1noble metals at -0.05 V (vs the reversible hydrogen electrode, RHE) for HER in 0.5 M H2SO4 solution, which is 40.4 and 74.5 times higher than those of the commercial Pt/C and Rh/C catalysts, respectively. Moreover, the us-HEA/C demonstrates an ultrahigh turnover frequency of 30.1 s-1 at 50 mV overpotential (41.8 times higher than that of the Pt/C catalyst) and excellent stability with no decay after 10 000 cycles. Operando X-ray absorption spectroscopy and theoretical calculations reveal the actual active sites, tunable electronic structures, and a synergistic effect among five elements, which endow significantly enhanced HER activity. This work not only engineers a general and scalable strategy for synthesizing us-HEA NPs and elucidates the complex structural information and catalytic mechanisms of multielement HEA system in depth, but also highlights HEAs as sufficiently advanced catalysts and accelerates the research of HEAs in energy-related applications.

10.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33511414

RESUMO

Insect innate immunity is initiated by the special recognition and binding of the foreign pathogens, which is accomplished by the pattern recognition receptors (PRRs). As an important type of PRRs, C-type lectins (CTLs) play various roles in insect innate immunity, including pathogen recognition, stimulation of prophenoloxidase, regulation of cellular immunity and so on. In this study, we have cloned the full-length cDNA of a CTL gene named CTL-S6 from the silkworm, Bombyx mori. The open reading frame (ORF) of B. mori CTL-S6 encodes 378 amino acids, which contain a secretion signal peptide. The mRNA of CTL-S6 exhibited the highest transcriptional level in the midgut. Its transcriptional level increased dramatically in fat body and hemocytes upon Escherichia coli or Micrococcus luteus challenge. Purified recombinant CTL-S6 could bind to bacterial cell wall components, including peptidoglycan (PGN, from Bacillus subtilis) and lipopolysaccharide (LPS, from E. coli 0111:B4), and recombinant CTL-S6 was involved in the encapsulation and melanization of hemocytes. Furthermore, the addition of recombinant CTL-S6 to the hemolymph of silkworm resulted in a significant increase in phenoloxidase activity. Overall, our results indicated that B. mori CTL-S6 may serve as a PRR for the recognition of foreign pathogens, prophenoloxidase pathway stimulation and involvement in the innate immunity.


Assuntos
Escherichia coli/fisiologia , Imunidade Inata/genética , Proteínas de Insetos/genética , Lectinas Tipo C/genética , Micrococcus luteus/fisiologia , Receptores de Reconhecimento de Padrão/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Bombyx , Corpo Adiposo/imunologia , Perfilação da Expressão Gênica , Hemócitos/imunologia , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Filogenia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/metabolismo , Alinhamento de Sequência
11.
Nano Lett ; 20(8): 5779-5785, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32643943

RESUMO

Continued improvement in the electrochemical performance of Li-Mn-O oxide cathode materials is key to achieving advanced low-cost Li-ion batteries with high energy densities. In this study, O2-type Li0.78[Li0.24Mn0.76]O2 nanowires were synthesized by a solvothermal reaction to produce P2-type Na5/6[Li1/4Mn3/4]O2 nanowires, which were then subjected to molten salt Li-ion exchange. The resulting nanowires have diameters less than 20 nm and lengths of several micrometers. The full-Mn-based nanowires cathode material delivers a reversible capacity of 275 mAh g-1 at 0.1 C and 200 mAh g-1 at a high current rate of 15 C with a capacity retention of more than 80% and the voltage decay was dramatically suppressed after 100 cycles. This excellent performance is ascribed to the highly stable oxygen redox reaction and lack of layered-to-spinel phase transition in the O2-type structure during cycling.

12.
Arch Virol ; 163(10): 2719-2725, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29948378

RESUMO

Bombyx mori larvae exhibit in vivo defensive reactions immediately after invasion by a virus. One of these defense systems is to express appropriate microRNAs (miRNAs) to respond to the infection. A novel Bombyx mori-encoded miRNA, bmo-miR-390, was identified previously by high-throughput sequencing. Based on bioinformatic predictions, the Bombyx mori nuclear polyhedrosis virus cg30 gene (BmNPV-cg30) is one of the target genes of bmo-miR-390. In this study, expression vectors with an enhanced green fluorescence protein (EGFP) or a luciferase (luc) reporter gene together with bm-miR-390 or the cg30 3' UTR were constructed and used to co-transfect BmN cells. Using a dual luciferase reporter (DLR) assay, we found that bmo-miR-390 significantly downregulates the expression of BmNPV-cg30 (P < 0.05) in vitro. Moreover, artificially synthesized bmo-miR-390 mimics enhanced the regulatory effect of bmo-miR-390, while an inhibitor eliminated the inhibitory effect. These results show for the first time that bmo-miR-390 can effectively downregulate the expression of BmNPV-cg30 in BmNPV-infected BmN cells.


Assuntos
Baculoviridae/metabolismo , Bombyx/metabolismo , Bombyx/virologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Proteínas Virais/genética , Animais , Baculoviridae/genética , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Regulação para Baixo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/virologia , MicroRNAs/genética , Proteínas Virais/metabolismo
13.
Nano Lett ; 17(5): 2788-2795, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394621

RESUMO

Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.

14.
Angew Chem Int Ed Engl ; 57(31): 9604-9633, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29460497

RESUMO

Metal sites play an essential role in both electrocatalytic and photocatalytic energy conversion. The highly ordered arrangements of the organic linkers and metal nodes as well as the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Porous carbon materials doped with ADMSs can be derived from these ADMS-incorporating MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique advantages over molecular or bulk metal-based catalysts and bridge the gap between homogeneous and heterogeneous catalysts for energy-conversion applications. This Review presents recent progress in the design and incorporation of ADMSs in MOFs and MOF-derived materials for energy-conversion applications.

15.
J Am Chem Soc ; 137(19): 6263-9, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25932623

RESUMO

Ordered intermetallic nanomaterials are of considerable interest for fuel cell applications because of their unique electronic and structural properties. The synthesis of intermetallic compounds generally requires the use of high temperatures and multiple-step processes. The development of techniques for rapid phase- and size-controlled synthesis remains a formidable challenge. The intermetallic compound Pt1Bi2 is a promising candidate catalyst for direct methanol fuel cells because of its high catalytic activity and excellent methanol tolerance. In this work, we explored a one-step, facile and ultrafast phase- and size-controlled process for synthesizing ordered Pt-Bi intermetallic nanoparticles (NPs) within seconds in microfluidic reactors. Single-phase Pt1Bi1 and Pt1Bi2 intermetallic NPs were prepared by tuning the reaction temperature, and size control was achieved by modifying the solvents and the length of the reaction channel. The as-prepared Pt-Bi intermetallic NPs exhibited excellent methanol tolerance capacity and high electrocatalytic activity. Other intermetallic nanomaterials, such as Pt3Fe intermetallic nanowires with a diameter of 8.6 nm and Pt1Sn1 intermetallic nanowires with a diameter of 6.3 nm, were also successfully synthesized using this method, thus demonstrating its feasibility and generality.

16.
Small ; 11(18): 2170-6, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25641786

RESUMO

To improve the performance of energy storage systems, the rational design of new electrode configurations is a strategic initiative. Here, we present a novel monodisperse fluffy alluaudite Na0.67FePO4, prepared by a modified solvothermal method, as promising electrode for sodium ion battery. This porous Na0.67FePO4 with nanocactus-like morphology is composed by nanorods within an open three-dimensional structure. This unique nanocactus-based morphology offers three important advantages when used as electrode for sodium ion battery: (i) provides an open frame structure for a large Na+ ions transport; (ii) reduces the sodium ion and electron transport path by ≈20 nm; (iii) offers a large surface area for a more efficient interface between the electrode and the electrolyte. The electrochemical investigation revealed that this fluffy Na0.67FePO4 nanocactus exhibits the high discharge capacity of 138 mAh g(-1). Moreover, a battery with a Na0.67FePO4/CNT hybrid electrode delivered a discharge capacity as high as ≈143 mAh g(-1), coupled to an excellent stable cyclability (no obvious capacity fading over 50 cycles at a current rate of 5 mA g(-1)). This enhanced mechanism was studied by means of absorption measurements and ex situ XAFS characterizations. Results of the characterization of the Na0.67FePO4 suggests that the outstanding performance can be associated with the unique fluffy nanocactus morphology.

17.
Small ; 11(21): 2511-7, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25688868

RESUMO

Cobalt sulfide (CoS2) is considered one of the most promising alternative anode materials for high-performance lithium-ion batteries (LIBs) by virtue of its remarkable electrical conductivity, high theoretical capacity, and low cost. However, it suffers from a poor cycling stability and low rate capability because of its volume expansion and dissolution of the polysulfide intermediates in the organic electrolytes during the battery charge/discharge process. In this study, a novel porous carbon/CoS2 composite is prepared by using nano metal-organic framework (MOF) templates for high-preformance LIBs. The as-made ultrasmall CoS2 (15 nm) nanoparticles in N-rich carbon exhibit promising lithium storage properties with negligible loss of capacity at high charge/discharge rate. At a current density of 100 mA g(-1), a capacity of 560 mA h g(-1) is maintained after 50 cycles. Even at a current density as high as 2500 mA g(-1), a reversible capacity of 410 mA h g(-1) is obtained. The excellent and highly stable battery performance should be attributed to the synergism of the ultrasmall CoS2 particles and the thin N-rich porous carbon shells derieved from nanosized MOF precusors.

18.
Chemistry ; 21(2): 851-60, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25371385

RESUMO

A series of alluaudite Na2 Fe3-x Mnx (PO4 )3 microcompounds, which self-assembled from primary nanorods, were prepared successfully through a solvothermal method. As a promising candidate cathode for sodium-ion batteries, it is necessary to obtain a deeper understanding of the relationship between the structure and physicochemical properties of these materials. The local electronic and geometric environments were systematically investigated, for the first time, by using a combination of soft/hard X-ray absorption, IR, and Mössbauer spectroscopy. The results show that the electrochemical performance is not only associated with morphology, but also with the electronic and crystalline structure. With the introduction of manganese into the lattice, the long-range order maintains the isostructural framework and the lattice parameters expand as expected. However, for short-range order, PO4 tetrahedra and MO6 octahedra (M=Fe and Mn) become more severely distorted as a function of Mn concentration. Meanwhile, larger MnO6 octahedra will compress the space of FeO6 octahedra, which will result in stronger core/electron-electron interactions for Fe, as characterized by hard/soft X-ray absorption spectra. These slight changes in the electronic and local structures lead to different electrochemical performances with changes to the manganese content. Moreover, other physicochemical properties, such as magnetic behavior, are also confirmed to be correlated with these different electron interactions and local geometric environments.

19.
Angew Chem Int Ed Engl ; 54(22): 6452-6, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25864686

RESUMO

Sodium-ion batteries are a very promising alternative to lithium-ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long-term stability still hinder their practical application. A cathode material, formed of RuO2 -coated Na3 V2 O2 (PO4 )2 F nanowires, has a 50 nm diameter with the space group of I4/mmm. When used as a cathode material for Na-ion batteries, a reversible capacity of 120 mAh g(-1) at 1 C and 95 mAh g(-1) at 20 C can be achieved after 1000 charge-discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3 V2 O2 (PO4 )2 F nanowires.

20.
Small ; 10(13): 2662-9, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24678060

RESUMO

This paper introduces a new approach for catalyst design using the non-precious metal Cu as one of the catalytic active centers. This differs from previous studies that considered precious metals to be responsible for the catalytic reaction in precious alloys. Intermetallic AuCu3/C nanoparticles with a diameter of 3 nm were developed for the first time, with uniform dispersion and a narrow size distribution. The ca. 3 nm as-synthesised AuCu3/C showed superior catalytic performance for oxygen reduction reactions (ORR) in alkaline solutions, with comparable half-wave potential and 1.5 times mass current density of commercial Pt/C at 0.80 V (vs. reversible hydrogen electrode (RHE)). The advanced catalytic activities are mainly attributed to the synergetic effects of electro-active atomic Au and Cu on the particle surface, in which Cu helps to activate the O2 molecule and Au benefits OH(-) desorption. The excellent durability and methanol tolerance exhibited in alkaline solutions provide another advantage for AuCu3/C to be considered as a potential alternative cathode catalyst in alkaline fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA