Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(3): 775-791.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33503446

RESUMO

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.


Assuntos
COVID-19/metabolismo , Regulação da Expressão Gênica , Proteoma/biossíntese , Proteômica , SARS-CoV-2/metabolismo , Autopsia , COVID-19/patologia , COVID-19/terapia , Feminino , Humanos , Masculino , Especificidade de Órgãos
2.
Immunity ; 47(6): 1114-1128.e6, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29221730

RESUMO

CD4+ T cells orchestrate immune responses and destruction of allogeneic organ transplants, but how this process is regulated on a transcriptional level remains unclear. Here, we demonstrated that interferon regulatory factor 4 (IRF4) was a key transcriptional determinant controlling T cell responses during transplantation. IRF4 deletion in mice resulted in progressive establishment of CD4+ T cell dysfunction and long-term allograft survival. Mechanistically, IRF4 repressed PD-1, Helios, and other molecules associated with T cell dysfunction. In the absence of IRF4, chromatin accessibility and binding of Helios at PD-1 cis-regulatory elements were increased, resulting in enhanced PD-1 expression and CD4+ T cell dysfunction. The dysfunctional state of Irf4-deficient T cells was initially reversible by PD-1 ligand blockade, but it progressively developed into an irreversible state. Hence, IRF4 controls a core regulatory circuit of CD4+ T cell dysfunction, and targeting IRF4 represents a potential therapeutic strategy for achieving transplant acceptance.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto , Transplante de Coração , Fatores Reguladores de Interferon/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Movimento Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Rejeição de Enxerto/mortalidade , Rejeição de Enxerto/patologia , Granzimas/genética , Granzimas/imunologia , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Análise de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Transplante Homólogo
3.
J Mol Cell Cardiol ; 191: 63-75, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718563

RESUMO

INTRODUCTION: Thoracic aortic aneurysm (TAA) is a severe vascular disease that threatens human life, characterized by focal dilatation of the entire aortic wall, with a diameter 1.5 times larger than normal. PIEZO1, a mechanosensitive cationic channel, monitors mechanical stimulations in the environment, transduces mechanical signals into electrical signals, and converts them into biological signals to activate intracellular signaling pathways. However, the role of PIEZO1 in TAA is still unclear. METHODS: We analyzed a single-cell database to investigate the expression level of PIEZO1 in TAA. We constructed a conditional knockout mouse model of Piezo1 and used the PIEZO1 agonist Yoda1 to intervene in the TAA model mice established by co-administration of BAPN and ANG-II. Finally, we explored the effect of Yoda1 on TAA in vitro. RESULTS AND DISCUSSION: We observed decreased PIEZO1 expression in TAA at both RNA and protein levels. Single-cell sequencing identified a specific reduction in Piezo1 expression in endothelial cells. Administration of PIEZO1 agonist Yoda1 prevented the formation of TAA. In PIEZO1 endothelial cell conditional knockout mice, Yoda1 inhibited TAA formation by interfering with PIEZO1. In vivo and in vitro experiments demonstrated that the effect of Yoda1 on endothelial cells involved macrophage infiltration, extracellular matrix degradation, and neovascularization. This study highlights the role of PIEZO1 in TAA and its potential as a therapeutic target, providing opportunities for clinical translation.


Assuntos
Aneurisma da Aorta Torácica , Modelos Animais de Doenças , Células Endoteliais , Canais Iônicos , Camundongos Knockout , Análise de Célula Única , Animais , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Camundongos , Células Endoteliais/metabolismo , Humanos , Masculino , Pirazinas , Tiadiazóis
4.
Circulation ; 148(4): 336-353, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232170

RESUMO

BACKGROUND: PCSK9 (proprotein convertase subtilisin/kexin 9), which is mainly secreted by the liver, is not only a therapeutic target for hyperlipidemia and cardiovascular disease, but also has been implicated in the immune regulation of infections and tumors. However, the role of PCSK9 and the liver in heart transplant rejection (HTR) and the underlying mechanisms remain unclear. METHODS: We assessed serum PCSK9 expression in both murine and human recipients during HTR and investigated the effect of PCSK9 ablation on HTR by using global knockout mice and a neutralizing antibody. Moreover, we performed multiorgan histological and transcriptome analyses, and multiomics and single-cell RNA-sequencing studies of the liver during HTR, as well. We further used hepatocyte-specific Pcsk9 knockout mice to investigate whether the liver regulated HTR through PCSK9. Last, we explored the regulatory effect of the PCSK9/CD36 pathway on the phenotype and function of macrophages in vitro and in vivo. RESULTS: Here, we report that murine and human recipients have high serum PCSK9 levels during HTR. PCSK9 ablation prolonged cardiac allograft survival and attenuated the infiltration of inflammatory cells in the graft and the expansion of alloreactive T cells in the spleen. Next, we demonstrated that PCSK9 was mainly produced and significantly upregulated in the recipient liver, which also showed a series of signaling changes, including changes in the TNF-α (tumor necrosis factor α) and IFN-γ (interferon γ) signaling pathways and the bile acid and fatty acid metabolism pathways. We found mechanistically that TNF-α and IFN-γ synergistically promoted PCSK9 expression in hepatocytes through the transcription factor SREBP2 (sterol regulatory element binding protein 2). Moreover, in vitro and in vivo studies indicated that PCSK9 inhibited CD36 expression and fatty acid uptake by macrophages and strengthened the proinflammatory phenotype, which facilitated their ability to promote proliferation and IFN-γ production by donor-reactive T cells. Last, we found that the protective effect of PCSK9 ablation against HTR is dependent on the CD36 pathway in the recipient. CONCLUSIONS: This study reveals a novel mechanism for immune regulation by the liver through the PCSK9/CD36 pathway during HTR, which influences the phenotype and function of macrophages and suggests that the modulation of this pathway may be a potential therapeutic target to prevent HTR.


Assuntos
Transplante de Coração , Pró-Proteína Convertase 9 , Humanos , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Hep G2 , Fígado/metabolismo , Ácidos Graxos/metabolismo , Camundongos Knockout , Transplante de Coração/efeitos adversos , Receptores de LDL/genética
5.
Nicotine Tob Res ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788476

RESUMO

INTRODUCTION: The global disease burden may be exacerbated by exposure to passive smoking (SHS), with the workplace being a primary location for such exposure. Numerous epidemiological studies have identified SHS as a risk factor for diseases affecting various systems, including cardiovascular, respiratory, immune, endocrine, and nervous systems. The conventional observational study has certain methodological constraints which can be circumvented through a Mendelian randomization (MR) study. Our MR study intends to investigate the causal link between workplace exposure to SHS and the potential associated diseases. METHODS: Summary statistics data involving European participants was sourced from three databases: the UK Biobank, the FinnGen study, and the European Bioinformatics Institute. Genetic variants linked with exposure to SHS in the workplace were identified as instrumental variables. The MR was carried out using inverse variance weighted (IVW), MR-Egger, and weighted median methods. Sensitivity tests were also undertaken within the MR to evaluate the validity of the causality. RESULTS: According to the IVW model, genetically determined atrial fibrillation (AF) and stroke [P= 6.64E-04 and 5.68E-07, odds ratio = 2.030 and 2.494, 95% confidence interval = 1.350,3.051 and 1.743,3.569] were robustly associated with exposure to SHS in the workplace. Suggestive associations were found between workplace SHS and myocardial infarction (MI), asthma, and depression. CONCLUSIONS: The MR study demonstrates that exposure to SHS in the workplace is a significant risk factor for AF and stroke in European individuals. Whether workplace exposure to SHS influences other diseases and the causality between them requires further exploration. IMPLICATIONS: This study explored the causality between exposure to SHS in the workplace and potential associated diseases in multiple systems, including MI, AF, stroke, lung cancer, asthma, allergic disease, type 2 diabetes, and depression, using a MR study. The MR study can circumvent the methodological constraints of observational studies and establish a causal relationship. The two-sample MR analysis provides evidence supporting the causal association of frequent workplace SHS with AF and stroke. Individuals exposed to SHS in the workplace may also have a heightened risk of MI, asthma, and depression. However, whether SHS affects other diseases and the causality between them requires further investigation. To our knowledge, this is the first two-sample MR study to determine the causal relationship between SHS and potential diseases. As exposure to SHS in the workplace is a prevalent issue and may contribute to a global disease burden. The reduction of exposure following the introduction of smoke-free laws has led to a decrease in the admission rate for cardiac events and an improvement in health indicators. It is crucial to further advance smoke-free policies and their implementation.

6.
Circ Res ; 126(12): 1671-1681, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302265

RESUMO

RATIONALE: Use of ACEIs (angiotensin-converting enzyme inhibitors) and ARBs (angiotensin II receptor blockers) is a major concern for clinicians treating coronavirus disease 2019 (COVID-19) in patients with hypertension. OBJECTIVE: To determine the association between in-hospital use of ACEI/ARB and all-cause mortality in patients with hypertension and hospitalized due to COVID-19. METHODS AND RESULTS: This retrospective, multi-center study included 1128 adult patients with hypertension diagnosed with COVID-19, including 188 taking ACEI/ARB (ACEI/ARB group; median age 64 [interquartile range, 55-68] years; 53.2% men) and 940 without using ACEI/ARB (non-ACEI/ARB group; median age 64 [interquartile range 57-69]; 53.5% men), who were admitted to 9 hospitals in Hubei Province, China from December 31, 2019 to February 20, 2020. In mixed-effect Cox model treating site as a random effect, after adjusting for age, gender, comorbidities, and in-hospital medications, the detected risk for all-cause mortality was lower in the ACEI/ARB group versus the non-ACEI/ARB group (adjusted hazard ratio, 0.42 [95% CI, 0.19-0.92]; P=0.03). In a propensity score-matched analysis followed by adjusting imbalanced variables in mixed-effect Cox model, the results consistently demonstrated lower risk of COVID-19 mortality in patients who received ACEI/ARB versus those who did not receive ACEI/ARB (adjusted hazard ratio, 0.37 [95% CI, 0.15-0.89]; P=0.03). Further subgroup propensity score-matched analysis indicated that, compared with use of other antihypertensive drugs, ACEI/ARB was also associated with decreased mortality (adjusted hazard ratio, 0.30 [95% CI, 0.12-0.70]; P=0.01) in patients with COVID-19 and coexisting hypertension. CONCLUSIONS: Among hospitalized patients with COVID-19 and coexisting hypertension, inpatient use of ACEI/ARB was associated with lower risk of all-cause mortality compared with ACEI/ARB nonusers. While study interpretation needs to consider the potential for residual confounders, it is unlikely that in-hospital use of ACEI/ARB was associated with an increased mortality risk.


Assuntos
Antagonistas de Receptores de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Infecções por Coronavirus/epidemiologia , Mortalidade Hospitalar , Hipertensão/epidemiologia , Pneumonia Viral/epidemiologia , Idoso , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19 , Infecções por Coronavirus/complicações , Feminino , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Pacientes Internados/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações
7.
BMC Med ; 19(1): 163, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34256745

RESUMO

BACKGROUND: Few studies had described the health consequences of patients with coronavirus disease 2019 (COVID-19) especially in those with severe infections after discharge from hospital. Moreover, no research had reported the health consequences in health care workers (HCWs) with COVID-19 after discharge. We aimed to investigate the health consequences in HCWs with severe COVID-19 after discharge from hospital in Hubei Province, China. METHODS: We conducted an ambidirectional cohort study in "Rehabilitation Care Project for Medical Staff Infected with COVID-19" in China. The participants were asked to complete three physical examinations (including the tests of functional fitness, antibodies to SARS-CoV-2 and immunological indicators) at 153.4 (143.3, 164.8), 244.3 (232.4, 259.1), and 329.4 (319.4, 339.3) days after discharge, respectively. Mann-Whitney U test, Kruskal-Wallis test, t test, one-way ANOVA, χ2, and Fisher's exact test were used to assess the variance between two or more groups where appropriate. RESULTS: Of 333 HCWs with severe COVID-19, the HCWs' median age was 36.0 (31.0, 43.0) years, 257 (77%) were female, and 191 (57%) were nurses. Our research found that 70.4% (114/162), 48.9% (67/137), and 29.6% (37/125) of the HCWs with severe COVID-19 were considered to have not recovered their functional fitness in the first, second, and third functional fitness tests, respectively. The HCWs showed improvement in muscle strength, flexibility, and agility/dynamic balance after discharge in follow-up visits. The seropositivity of IgM (17.0% vs. 6.6%) and median titres of IgM (3.0 vs. 1.4) and IgG (60.3 vs. 45.3) in the third physical examination was higher than that in the first physical examination. In the third physical examination, there still were 42.1% and 45.9% of the HCWs had elevated levels of IL-6 and TNF-α, and 11.9% and 6.3% of the HCWs had decreased relative numbers of CD3+ T cells and CD4+ T cells. CONCLUSION: The HCWs with severe COVID-19 showed improvement in functional fitness within 1 year after discharge, active intervention should be applied to help their recovery if necessary. It is of vital significance to continue monitoring the functional fitness, antibodies to SARS-CoV-2 and immunological indicators after 1 year of discharge from hospital in HCWs with severe COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19 , COVID-19 , Teste de Esforço , Pessoal de Saúde/estatística & dados numéricos , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/reabilitação , Teste Sorológico para COVID-19/métodos , Teste Sorológico para COVID-19/estatística & dados numéricos , China/epidemiologia , Teste de Esforço/métodos , Teste de Esforço/estatística & dados numéricos , Feminino , Seguimentos , Estado Funcional , Humanos , Interleucina-6/sangue , Masculino , Alta do Paciente/estatística & dados numéricos , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue
8.
J Cell Physiol ; 235(3): 2478-2491, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31489966

RESUMO

Thoracic aortic aneurysm (TAA), a serious cardiovascular disease that causes morbidity and mortality worldwide. At present, few biomarkers can accurately diagnose the appearance of TAA before dissection or rupture. Our research has the intention to investigate the developing applicable biomarkers for TAA promising clinically diagnostic biomarkers or probable regulatory targets for TAA. In our research, we built correlation networks utilizing the expression profile of peripheral blood mononuclear cell obtained from a public microarray data set (GSE9106). Furthermore, we chose the turquoise module, which has the strongest significance with TAA and was further analyzed. Fourteen genes that overlapped with differentially expressed proteins in the medial aortic layer were obtained. Subsequently, we verified the results applying quantitative polymerase chain reaction (Q-PCR) to our clinical specimen. In general, the Q-PCR results coincide with the majority of the expression profile. Fascinatingly, a notable change occurred in CLU, DES, MYH10, and FBLN5. In summary, using weighted gene coexpression analysis, our study indicates that CLU, DES, MYH10, and FBLN5 were identified and validated to be related to TAA and might be candidate biomarkers or therapeutic targets for TAA.


Assuntos
Aneurisma da Aorta Torácica/sangue , Clusterina/sangue , Desmina/sangue , Proteínas da Matriz Extracelular/sangue , Cadeias Pesadas de Miosina/sangue , Miosina não Muscular Tipo IIB/sangue , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Biomarcadores/sangue , Proteínas da Matriz Extracelular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Transcriptoma/genética
9.
Hepatology ; 69(1): 76-93, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063256

RESUMO

Nonalcoholic fatty liver disease (NAFLD), ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH), is the leading cause of chronic liver diseases. Until now, no medications for NAFLD have been approved by relevant governmental agencies. Dual-specificity phosphatase 9 (Dusp9) is a member of the DUSP protein family. Dusp9 is expressed in insulin-sensitive tissues, and its expression may be modified with the development of insulin resistance (IR). However, the molecular targets and mechanisms of Dusp9 action on NAFLD and NASH remain poorly understood. In this study, using conditional liver-specific Dusp9-knockout (Dusp9-CKO) mice and Dusp9-transgenic mice, we showed that Dusp9 was a key suppressor of high-fat diet-induced hepatic steatosis and inflammatory responses and that Dusp9 deficiency aggravated high-fat high-cholesterol diet-induced liver fibrosis. Dusp9 was shown to exert its effects by blocking apoptosis signal-regulating kinase 1 (ASK1) phosphorylation and the subsequent activation of p38 and c-Jun NH2-terminal kinase signaling. Conclusion: Hepatocyte Dusp9 prevents NAFLD and NASH progression in mice, including lipid accumulation, glucose metabolism disorders, and enhanced inflammation and liver fibrosis, in an ASK1-dependent manner; these findings suggest that Dusp9 may be a promising therapeutic target for the treatment of NAFLD and NASH.


Assuntos
Fosfatases de Especificidade Dupla/fisiologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/enzimologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Hepatology ; 69(5): 1946-1964, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30582764

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which has a wide global distribution, includes different stages ranging from simple steatosis to nonalcoholic steatohepatitis, advanced fibrosis, and liver cirrhosis according to the degree of severity. Chronic low-grade inflammation, insulin resistance, and lipid accumulation are the leading causes of NAFLD. To date, no effective medicine for NAFLD has been approved by governmental agencies. Our study demonstrated that the expression of dual-specificity phosphatase 26 (Dusp26), a member of the Dusp protein family, was decreased in the liver tissue of mice with hepatic steatosis and genetically obese (ob/ob) mice. In our study, hepatic steatosis, inflammatory responses, and insulin resistance were exacerbated in liver-specific Dusp26-knockout (KO) mice but ameliorated in liver-specific Dusp26-transgenic mice induced by a high-fat diet. In addition, the degree of liver fibrosis was aggravated in high-fat high-cholesterol diet-induced Dusp26-KO mice. We further found that the binding of Dusp26 to transforming growth factor beta-activated kinase 1 (TAK1) to block the phosphorylation of TAK1 regulated the TAK1-p38/c-Jun NH2-terminal kinase signaling axis to alleviate hepatic steatosis and metabolic disturbance. Conclusion: These findings suggest that Dusp26 is a good TAK1-dependent therapeutic target for NAFLD.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Obesidade/enzimologia , Animais , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Cirrose Hepática/etiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações
11.
Arterioscler Thromb Vasc Biol ; 38(5): 1086-1101, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29519942

RESUMO

OBJECTIVE: Thoracic aortic aneurysm and dissection (TAAD) are severe vascular conditions. Dysfunctional transforming growth factor-ß (TGF-ß) signaling in vascular smooth muscle cells and elevated angiotensin II (AngII) levels are implicated in the development of TAAD. In this study, we investigated whether these 2 factors lead to TAAD in a mouse model and explored the possibility of using microRNA-21 (miR-21) for the treatment of TAAD. APPROACH AND RESULTS: TAAD was developed in Smad3 (mothers against decapentaplegic homolog 3) heterozygous (S3+/-) mice infused with AngII. We found that p-ERK (phosphorylated extracellular regulated protein kinases)- and p-JNK (phosphorylated c-Jun N-terminal kinase)-associated miR-21 was higher in TAAD lesions. We hypothesize that downregulation of miR-21 mitigate TAAD formation. However, Smad3+/-:miR-21-/- (S3+/-21-/-) mice exhibited conspicuous TAAD formation after AngII infusion. The vascular wall was dilated, and aortic rupture occurred within 23 days during AngII infusion. We then examined canonical and noncanonical TGF-ß signaling and found that miR-21 knockout in S3+/- mice increased SMAD7 and suppressed canonical TGF-ß signaling. Vascular smooth muscle cells lacking TGF-ß signals tended to switch from a contractile to a synthetic phenotype. The silencing of Smad7 with lentivirus prevented AngII-induced TAAD formation in S3+/-21-/- mice. CONCLUSIONS: Our study demonstrated that miR-21 knockout exacerbated AngII-induced TAAD formation in mice, which was associated with TGF-ß signaling dysfunction. Therapeutic strategies targeting TAAD should consider unexpected side effects associated with alterations in TGF-ß signaling.


Assuntos
Angiotensina II , Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Ruptura Aórtica/prevenção & controle , MicroRNAs/metabolismo , Proteína Smad3/deficiência , Fator de Crescimento Transformador beta/metabolismo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/genética , Dissecção Aórtica/metabolismo , Animais , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Ruptura Aórtica/induzido quimicamente , Ruptura Aórtica/genética , Ruptura Aórtica/metabolismo , Células Cultivadas , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular , Predisposição Genética para Doença , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Fosforilação , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad7/genética , Proteína Smad7/metabolismo
12.
J Card Surg ; 34(10): 1123-1126, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31374583

RESUMO

Primary cardiac tumors are very rare and generally benign. The most common type, cardiac rhabdomyoma, comprises 45% to 75% of primary cardiac tumors. Cardiac rhabdomyoma is a rare benign tumor that commonly presents with tuberous sclerosis. We present a case of an infant with multifocal cardiac rhabdomyomas with an atrial septal defect and tricuspid insufficiency and no sign of tuberous sclerosis. She was successfully treated with an operation, the treatment plan included mass resection, tricuspid annuloplasty, and closure of the patent foramen ovale. The right atrial lesion was resected entirely, while the lobulated lesion in the right ventricle was resected as two pieces. There was no evidence of recurrence 1 year after the surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Neoplasias Cardíacas/diagnóstico , Comunicação Interatrial/cirurgia , Rabdomioma/cirurgia , Insuficiência da Valva Tricúspide/cirurgia , Diagnóstico Diferencial , Ecocardiografia , Feminino , Seguimentos , Neoplasias Cardíacas/complicações , Neoplasias Cardíacas/cirurgia , Comunicação Interatrial/complicações , Comunicação Interatrial/diagnóstico , Ventrículos do Coração , Humanos , Lactente , Imagem Cinética por Ressonância Magnética , Rabdomioma/complicações , Rabdomioma/diagnóstico , Insuficiência da Valva Tricúspide/complicações , Insuficiência da Valva Tricúspide/diagnóstico
13.
J Vasc Surg ; 67(3): 933-944.e3, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29477204

RESUMO

OBJECTIVE: Arteriovenous fistula (AVF) suffers from a high number of failures caused by insufficient outward remodeling and venous neointimal hyperplasia formation. The aim was to investigate the exact mechanism by which microRNA-155 (miR-155) in the outflow vein of AVF is regulated. METHODS: AVFs between the branch of the jugular vein and carotid artery in an end-to-end manner were created in C57BL/6 and miR-155-/- mice with a C57BL/6 background. The venous segments were harvested at day 7, 14, 21, and 28, and the AVFs were analyzed histologically and at a messenger RNA level using real-time quantitative polymerase chain reactions. The outflow vein of AVF and the normal great saphenous vein, collected from patients with chronic kidney disease and coronary artery bypass surgery, were analyzed by histologic and molecular biologic approaches. RESULTS: Venous neointimal hyperplasia is significantly alleviated in miR-155-/- mice, and the expression of several chemokines and cytokines in the vessel wall, including regulated on activation, normal T-cell expressed and secreted factor (RANTES), monocyte chemoattractant protein 1, and vascular endothelial growth factor, was inhibited. miR-155 promoted the RANTES expression of smooth muscle-like cells, which in turn facilitated cell proliferation and extracellular matrix production. CONCLUSIONS: miR-155 enhances venous neointima formation through the autocrine and paracrine effects of smooth muscle-like cell-derived RANTES in a nuclear factor κB-dependent manner during the entire AVF process, especially at the advanced stage.


Assuntos
Derivação Arteriovenosa Cirúrgica/efeitos adversos , Quimiocina CCL5/metabolismo , Mediadores da Inflamação/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Animais , Comunicação Autócrina , Proliferação de Células , Quimiocina CCL5/genética , Humanos , Hiperplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Comunicação Parácrina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo
14.
J Biol Chem ; 291(40): 21085-21095, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27432879

RESUMO

Previous studies mainly focused on the role of the epidermal growth factor receptor (EGFR) in tumor cells, whereas the effects of the EGFR on immune responses has not been determined. Our study shows that the EGFR signaling pathway play a role in the regulation of regulatory T cells (Treg cells) in cancer patients. The EGF-like growth factor Amphiregulin (AREG) protein was frequently up-regulated in a tissue microarray, which was associated with worse overall survival. Additionally, in sera, tissue specimens, and effusions of lung or gastric cancer patients, up-regulated AREG protein enhanced the suppressive function of Treg cells. AREG maintained the Treg cell suppressive function via the EGFR/GSK-3ß/Foxp3 axis in vitro and in vivo Furthermore, inhibition of EGFR by the tyrosine kinase inhibitor gefitinib restored the activity of GSK-3ß and attenuated Treg cell function. ß-TrCP was involved in GSK-3ß-mediated Foxp3 degradation, and mass spectrometry identified Lys356 as the ubiquitination site of Foxp3 by ß-TrCP. These findings demonstrate the posttranslational regulation of Foxp3 expression by AREG in cancer patients through AREG/EGFR/GSK-3ß signaling, which could lead to Foxp3 protein degradation in Treg cells and a potential therapeutic target for cancer treatment.


Assuntos
Anfirregulina/imunologia , Receptores ErbB/imunologia , Fatores de Transcrição Forkhead/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Glicogênio Sintase Quinase 3 beta/imunologia , Neoplasias/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Receptores ErbB/antagonistas & inibidores , Feminino , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Masculino , Neoplasias/patologia , Quinazolinas/farmacologia , Linfócitos T Reguladores/patologia , Proteínas Contendo Repetições de beta-Transducina/imunologia
15.
J Surg Res ; 208: 132-139, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27993200

RESUMO

BACKGROUND: This study sought to establish a new model of high-flow pulmonary hypertension (PH) in mice. This model may be useful for studies seeking to reduce the pulmonary vascular resistance and delay the development of PH caused by congenital heart disease. MATERIALS AND METHODS: The right pulmonary artery was ligated via a right posterolateral thoracotomy. Pulmonary hemodynamics was evaluated by right heart catheterization immediately after ligation and at 2, 4, 8, and 12 wk postoperatively. The right ventricle (RV) and the left ventricle (LV) with septum (S) were weighed to calculate the RV/(LV + S) ratio as an index of right ventricular hypertrophy. Morphologic changes in the left lungs were analyzed, and percentages of muscularized pulmonary vessels were assessed by hematoxylin and eosin, elastica van Gieson and alpha-smooth muscle actin staining. All the study data were compared with data from a model of PH generated by hypoxic stimulation. RESULTS: A pulmonary hypertensive state was successfully induced by 2 wk after surgery. However, the morphologic analysis demonstrated that pulmonary vascular muscularization, as evaluated using right ventricular systolic pressure and RV/(LV + S), was not significantly increased until 4 wk postoperatively. When mice from the new model and the hypoxic model were compared, no significant differences were observed in any of the evaluated indices. CONCLUSIONS: High-flow PH can be induced within 4 wk after ligation of the right pulmonary artery, which is easily performed in mice. Such mice can be used as a model of high-flow PH.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar , Animais , Hemodinâmica , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Distribuição Aleatória
16.
Arterioscler Thromb Vasc Biol ; 36(6): 1230-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27079875

RESUMO

OBJECTIVE: Smooth muscle-like cells are major cell components of transplant arteriosclerosis lesions. This study investigated the origin of the smooth muscle-like cells, the mechanisms responsible for their accumulation in the neointima, and the factors that drive these processes. APPROACH AND RESULTS: A murine aortic transplantation model was established by transplanting miR-155(-/-) bone marrow cells into miR-155(+/+) mice. MicroRNA-155 was found to play a functional role in the transplant arteriosclerosis. Moreover, we found that the nonbone marrow-derived progenitor cells with markers of both early differentiated smooth muscles and stem cells in the allograft adventitia were smooth muscle progenitor cells. Purified smooth muscle progenitor cells expressed a mature smooth muscle cell marker when induced by platelet-derived growth factor-BB in vitro. In vivo, these cells could migrate into the intima from the adventitia and could contribute to the neointimal hyperplasia. The loss of microRNA-155 in bone marrow-derived cells decreased the concentration gradient of monocyte chemoattractant protein 1 between the intima and the adventitia of the allografts, which reduced the migration of smooth muscle progenitor cells from the adventitia into the neointima. CONCLUSIONS: This study demonstrated that microRNA-155 promoted the directional migration of smooth muscle progenitor cells from the adventitia by regulating the monocyte chemoattractant protein 1 concentration gradient, which aggravated transplant arteriosclerosis.


Assuntos
Aorta/transplante , Aterosclerose/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxia , MicroRNAs/metabolismo , Músculo Liso Vascular/transplante , Miócitos de Músculo Liso/transplante , Células-Tronco/metabolismo , Enxerto Vascular/efeitos adversos , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Aloenxertos , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Diferenciação Celular , Células Cultivadas , Genótipo , Hiperplasia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Transdução de Sinais , Células-Tronco/patologia , Fatores de Tempo , Transfecção
17.
Acta Cardiol Sin ; 31(2): 144-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27122861

RESUMO

BACKGROUND: To investigate the effects of tissue-type plasminogen activator (tPA) gene transfer with left-atrium local positioning on the fibrinolytic activity of rabbit left atrial blood. METHODS: A total of 48 rabbits were randomly divided into 3 groups (n = 16): gene therapy, vector control, and blank control groups. Each group was divided into 2 subgroups (8 rabbits in each subgroup) according to the sacrifice time on the postoperative 3(rd) and 14(th) days. The tPA mRNA transcriptional level and exogenous tPA protein expression within regional myocardial tissues of the left atrium were detected on the postoperative 3(rd) and 14(th) days. After excluding the animals that died, 6 samples of each subgroup were randomly selected for the statistics (n = 6). RESULTS: The tPA activities in rabbit left atrial blood and peripheral blood were also detected. The tPAmRNA and tPA protein expressions within regional myocardial tissues were detected on the postoperative 3(rd) and 14(th) days. The tPA activity in left atrial blood in the gene therapy group was higher than the tPA activity of other groups (p < 0.02). No significant differences were observed in the tPA activity of peripheral blood among the 3 groups before surgery. A gelatin-coated Dacron piece, which carried the tPA gene, was implanted in the left atrial appendage. CONCLUSIONS: The gelatin-coated Dacron piece could express and secrete tPA proteins in the region, thus enhancing the fibrinolytic activity of left atrial blood. KEY WORDS: Fibrinolytic activity; Gelatin coating; Gene; Left atrium; Tissue-type plasminogen activator.

18.
Immunology ; 143(4): 618-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24944101

RESUMO

Regulatory T (Treg) cells play an important role in the maintenance of immune self-tolerance and homeostasis. We previously reported that neonatal CD4(+) T cells have an intrinsic 'default' mechanism to become Treg (neoTreg) cells in response to T-cell receptor (TCR) stimulation. However, the underlying mechanisms are unclear and the effects of neoTreg cells on regulating immune responses remain unknown. Due to their involvement in Foxp3 regulation, we examined the role of DNA methyltransferase 1 (DNMT1) and DNMT3b during the induction of neoTreg cells in the Foxp3(gfp) mice. The function of neoTreg cells was assessed in an acute allograft rejection model established in RAG2(-/-) mice with allograft cardiac transplantation and transferred with syngeneic CD4(+) effector T cells. Following ex vivo TCR stimulation, the DNMT activity was increased threefold in adult CD4(+) T cells, but not significantly increased in neonatal cells. However, adoptively transferred neoTreg cells significantly prolonged cardiac allograft survival (mean survival time 47 days, P < 0.001) and maintained Foxp3 expression similar to natural Treg cells. The neoTreg cells were hypomethylated at the conserved non-coding DNA sequence 2 locus of Foxp3 compared with adult Treg cells. The DNMT antagonist 5-aza-2'-deoxycytidine (5-Aza) induced increased Foxp3 expression in mature CD4(+) T cells. 5-Aza-inducible Treg cells combined with continuous 5-Aza treatment prolonged graft survival. These results indicate that the 'default' pathway of neoTreg cell differentiation is associated with reduced DNMT1 and DNMT3b response to TCR stimulus. The neoTreg cells may be a strategy to alleviate acute allograft rejection.


Assuntos
Metilação de DNA , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Transplante de Coração , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Regiões não Traduzidas , Transferência Adotiva , Animais , Animais Recém-Nascidos , Azacitidina/análogos & derivados , Azacitidina/farmacologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Decitabina , Fatores de Transcrição Forkhead/genética , Sobrevivência de Enxerto/efeitos dos fármacos , Imunofenotipagem , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Transplante Homólogo , DNA Metiltransferase 3B
19.
Front Cardiovasc Med ; 11: 1384294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745757

RESUMO

Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.

20.
Transplantation ; 108(5): 1127-1141, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238904

RESUMO

BACKGROUND: Emerging evidence has highlighted the role of macrophages in heart transplant rejection (HTR). However, the molecular signals modulating the immunometabolic phenotype of allograft-infiltrating macrophages (AIMs) during HTR remain unknown. METHODS: We analyzed single-cell RNA sequencing data from cardiac graft-infiltrating immunocytes to characterize the activation patterns and metabolic features of AIMs. We used flow cytometry to determine iNOS and PKM2 expression and MEK/ERK signaling activation levels in AIMs. We then generated macrophage-specific Mek1/2 knockout mice to determine the role of the MEK1/2-PKM2 pathway in the proinflammatory phenotype and glycolytic capacity of AIMs during HTR. RESULTS: Single-cell RNA sequencing analysis showed that AIMs had a significantly elevated proinflammatory and glycolytic phenotype. Flow cytometry analysis verified that iNOS and PKM2 expressions were significantly upregulated in AIMs. Moreover, MEK/ERK signaling was activated in AIMs and positively correlated with proinflammatory and glycolytic signatures. Macrophage-specific Mek1/2 deletion significantly protected chronic cardiac allograft rejection and inhibited the proinflammatory phenotype and glycolytic capacity of AIMs. Mek1/2 ablation also reduced the proinflammatory phenotype and glycolytic capacity of lipopolysaccharides + interferon-γ-stimulated macrophages. Mek1/2 ablation impaired nuclear translocation and PKM2 expression in macrophages. PKM2 overexpression partially restored the proinflammatory phenotype and glycolytic capacity of Mek1/2 -deficient macrophages. Moreover, trametinib, an Food and Drug Administration-approved MEK1/2 inhibitor, ameliorated chronic cardiac allograft rejection. CONCLUSIONS: These findings suggest that the MEK1/2-PKM2 pathway is essential for immunometabolic reprogramming of proinflammatory AIMs, implying that it may be a promising therapeutic target in clinical heart transplantation.


Assuntos
Rejeição de Enxerto , Transplante de Coração , MAP Quinase Quinase 1 , MAP Quinase Quinase 2 , Macrófagos , Camundongos Knockout , Animais , Transplante de Coração/efeitos adversos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Rejeição de Enxerto/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , MAP Quinase Quinase 2/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 1/genética , Proteínas de Ligação a Hormônio da Tireoide , Camundongos Endogâmicos C57BL , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Masculino , Transdução de Sinais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Glicólise , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Modelos Animais de Doenças , Fenótipo , Aloenxertos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA