Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(2): 1024-1040, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37930282

RESUMO

In the acyl-CoA-independent pathway of triacylglycerol (TAG) synthesis unique to plants, fungi, and algae, TAG formation is catalyzed by the enzyme phospholipid:diacylglycerol acyltransferase (PDAT). The unique PDAT gene of the model diatom Phaeodactylum tricornutum strain CCMP2561 boasts 47 single nucleotide variants within protein coding regions of the alleles. To deepen our understanding of TAG synthesis, we observed the allele-specific expression of PDAT by the analysis of 87 published RNA-sequencing (RNA-seq) data and experimental validation. The transcription of one of the two PDAT alleles, Allele 2, could be specifically induced by decreasing nitrogen concentrations. Overexpression of Allele 2 in P. tricornutum substantially enhanced the accumulation of TAG by 44% to 74% under nutrient stress; however, overexpression of Allele 1 resulted in little increase of TAG accumulation. Interestingly, a more serious growth inhibition was observed in the PDAT Allele 1 overexpression strains compared with Allele 2 counterparts. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that enzymes encoded by PDAT Allele 2 but not Allele 1 had TAG biosynthetic activity, and 7 N-terminal and 3 C-terminal amino acid variants between the 2 allele-encoded proteins substantially affected enzymatic activity. P. tricornutum PDAT, localized in the innermost chloroplast membrane, used monogalactosyldiacylglycerol and phosphatidylcholine as acyl donors as demonstrated by the increase of the 2 lipids in PDAT knockout lines, which indicated a common origin in evolution with green algal PDATs. Our study reveals unequal roles among allele-encoded PDATs in mediating carbon storage and growth in response to nitrogen stress and suggests an unsuspected strategy toward lipid and biomass improvement for biotechnological purposes.


Assuntos
Diacilglicerol O-Aciltransferase , Diatomáceas , Diacilglicerol O-Aciltransferase/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Alelos , Especificidade por Substrato , Plantas/metabolismo , Fosfolipídeos , Nitrogênio , Triglicerídeos/metabolismo
2.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458930

RESUMO

SUMMARY: With the continuous development of high-throughput sequencing technology, bioinformatic analysis of omics data plays an increasingly important role in life science research. Many R packages are widely used for omics analysis, such as DESeq2, clusterProfiler and STRINGdb. And some online tools based on them have been developed to free bench scientists from programming with these R packages. However, the charts generated by these tools are usually in a fixed, non-editable format and often fail to clearly demonstrate the details the researchers intend to express. To address these issues, we have created Visual Omics, an online tool for omics data analysis and scientific chart editing. Visual Omics integrates multiple omics analyses which include differential expression analysis, enrichment analysis, protein domain prediction and protein-protein interaction analysis with extensive graph presentations. It can also independently plot and customize basic charts that are involved in omics analysis, such as various PCA/PCoA plots, bar plots, box plots, heat maps, set intersection diagrams, bubble charts and volcano plots. A distinguishing feature of Visual Omics is that it allows users to perform one-stop omics data analyses without programming, iteratively explore the form and layout of graphs online and fine-tune parameters to generate charts that meet publication requirements. AVAILABILITY AND IMPLEMENTATION: Visual Omics can be used at http://bioinfo.ihb.ac.cn/visomics. Source code can be downloaded at http://bioinfo.ihb.ac.cn/software/visomics/visomics-1.1.tar.gz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Internet
3.
Genomics ; 115(5): 110706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714387

RESUMO

The grass carp (Ctenopharyngodon idella) is the world's most prolific freshwater fish. Little is known, however, about the functional genes and genetic regulatory networks that govern its growth traits. We created three grass carp families in this study by using two grass carp parents with fast-growing offspring and two grass carp parents with slow-growing offspring, namely the fast-growing × fast-growing family (FF), the slow-growing × slow-growing family (SS), and the fast-growing × slow-growing family (FS). Under the satiation and starvation feeding modes, the average body weight of these families' offspring exhibited a consistent ordering (FF > FS > SS). The transcriptomes of grass carp whole brain and hepatopancreas were then acquired for each family, and it was discovered that the number of differentially expressed genes (DEGs) in the different organs demonstrated family specificity. DEGs were mostly identified in the hepatopancreas of FF and the whole brain of SS, but they were more evenly distributed in FS. There were 14 DEGs that were found in all three families, including three that were negatively correlated in hepatopancreas (ahsg2, lect2) or in brain (drd5), and 11 that were positively connected in hepatopancreas (sycn, pabpc4, zgc:112294, cel, endou, ela2, prss3, zbtb41, ela3) or in brain (fabp7, endod1). The deletion of ahsg2 boosted the growth rate only in certain zebrafish, suggesting that the growth-promoting effects of ahsg2 varies among individuals. Furthermore, we examined the SNP in each family and conducted preliminary research on the probable genetic pathways of family-specific control of growth traits. The family specificity of the growth regulation mechanism of grass carp at the transcriptional level was revealed for the first time in this study, and it was discovered that growth differences among individuals in the FF family were primarily due to differences in nutrient metabolism, whereas growth differences among individuals in the SS family may be primarily due to differences in foraging ability caused by differences in brain development. This research adds to our understanding of the genetic regulatory mechanism of grass carp growth.


Assuntos
Carpas , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Carpas/genética , Perfilação da Expressão Gênica , Transcriptoma , Fenótipo
4.
RNA ; 27(1): 80-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055239

RESUMO

High-throughput RNA sequencing unveiled the complexity of transcriptome and significantly increased the records of long noncoding RNAs (lncRNAs), which were reported to participate in a variety of biological processes. Identification of lncRNAs is a key step in lncRNA analysis, and a bunch of bioinformatics tools have been developed for this purpose in recent years. While these tools allow us to identify lncRNA more efficiently and accurately, they may produce inconsistent results, making selection a confusing issue. We compared the performance of 41 analysis models based on 14 software packages and different data sets, including high-quality data and low-quality data from 33 species. In addition, computational efficiency, robustness, and joint prediction of the models were explored. As a practical guidance, key points for lncRNA identification under different situations were summarized. In this investigation, no one of these models could be superior to others under all test conditions. The performance of a model relied to a great extent on the source of transcripts and the quality of assemblies. As general references, FEELnc_all_cl, CPC, and CPAT_mouse work well in most species while COME, CNCI, and lncScore are good choices for model organisms. Since these tools are sensitive to different factors such as the species involved and the quality of assembly, researchers must carefully select the appropriate tool based on the actual data. Alternatively, our test suggests that joint prediction could behave better than any single model if proper models were chosen. All scripts/data used in this research can be accessed at http://bioinfo.ihb.ac.cn/elit.


Assuntos
Biologia Computacional/métodos , Genoma , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Software , Animais , Benchmarking , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Modelos Genéticos , Anotação de Sequência Molecular , Plantas/genética , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transcriptoma
5.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901854

RESUMO

Although it is widely accepted that in the early stages of virus infection, fish pattern recognition receptors are the first to identify viruses and initiate innate immune responses, this process has never been thoroughly investigated. In this study, we infected larval zebrafish with four different viruses and analyzed whole-fish expression profiles from five groups of fish, including controls, at 10 h after infection. At this early stage of virus infection, 60.28% of the differentially expressed genes displayed the same expression pattern across all viruses, with the majority of immune-related genes downregulated and genes associated with protein synthesis and sterol synthesis upregulated. Furthermore, these protein synthesis- and sterol synthesis-related genes were strongly positively correlated in the expression pattern of the rare key upregulated immune genes, IRF3 and IRF7, which were not positively correlated with any known pattern recognition receptor gene. We hypothesize that viral infection triggered a large amount of protein synthesis that stressed the endoplasmic reticulum and the organism responded to this stress by suppressing the body's immune system while also mediating an increase in steroids. The increase in sterols then participates the activation of IRF3 and IRF7 and triggers the fish's innate immunological response to the virus infection.


Assuntos
Vírus , Peixe-Zebra , Animais , Peixe-Zebra/genética , Transcriptoma , Esteróis , Imunidade Inata , Receptores de Reconhecimento de Padrão/genética , Vírus/genética
6.
Genomics ; 113(6): 4004-4014, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34614437

RESUMO

Grass carp (Ctenopharyngodon idella) is the most productive freshwater aquaculture fish in worldwide. However, the molecular mechanism of its growth traits has not been fully elucidated. Whole transcriptome analysis of the brain and hepatopancreas of 29 six-month-old grass carp with different growth rates was performed. Weighted gene co-expression network analysis (WGCNA) was used to construct a weighted gene co-expression network of mRNA, miRNA and lncRNA separately. A total of 35 hub mRNAs, 47 hub lncRNAs and 33 hub miRNAs were identified from the brain, 37 hub mRNAs, 110 hub lncRNAs and 36 hub miRNAs were identified from the hepatopancreas. The ceRNA networks in the brain and hepatopancreas were involved in brain development and nutrient metabolism, respectively. Overall, this is the first investigation of the growth-related transcriptomic characteristics in the brain and hepatopancreas of grass carp, thus will help us to further explore the molecular mechanism of grass carp growth rate.


Assuntos
Carpas , MicroRNAs , RNA Longo não Codificante , Animais , Carpas/genética , Carpas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
7.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232849

RESUMO

A high-quality baseline transcriptome is a valuable resource for developmental research as well as a useful reference for other studies. We gathered 41 samples representing 11 tissues/organs from 22 important developmental time points within 197 days of fertilization of grass carp eggs in order to systematically examine the role of lncRNAs and alternative splicing in fish development. We created a high-quality grass carp baseline transcriptome with a completeness of up to 93.98 percent by combining strand-specific RNA sequencing and single-molecule real-time RNA sequencing technologies, and we obtained temporal expression profiles of 33,055 genes and 77,582 transcripts during development and tissue differentiation. A family of short interspersed elements was preferentially expressed at the early stage of zygotic activation in grass carp, and its possible regulatory components were discovered through analysis. Additionally, after thoroughly analyzing alternative splicing events, we discovered that retained intron (RI) alternative splicing events change significantly in both zygotic activation and tissue differentiation. During zygotic activation, we also revealed the precise regulatory characteristics of the underlying functional RI events.


Assuntos
Carpas , Doenças dos Peixes , RNA Longo não Codificante , Processamento Alternativo , Animais , Carpas/genética , Carpas/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma
8.
Mol Biol Evol ; 37(9): 2584-2600, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359138

RESUMO

Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3-7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 3' ends, with 3-5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increased male expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandem multigene families can follow toward long-term consolidation in eukaryotic genomes.


Assuntos
Dineínas do Axonema/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Família Multigênica , Animais , Feminino , Conversão Gênica , Masculino , Seleção Genética , Espermatozoides/fisiologia
9.
BMC Genomics ; 21(1): 313, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306899

RESUMO

BACKGROUND: Grass carp (Ctenopharyngodon idellus) are important species in Asian aquaculture. A draft genome for grass carp has already been published in 2015. However, there is still a requirement for a suitable genetic linkage map to arrange scaffolds on chromosomal frameworks. QTL analysis is a powerful tool to detect key locations for quantitative traits, especially in aquaculture. There no growth related QTLs of grass carp have been published yet. Even the growth trait is one of the focuses in grass carp culture. RESULTS: In this study, a pair of distantly related parent grass carps and their 100 six-month-old full-sib offspring were used to construct a high-density genetic map with 6429 single nucleotide polymorphisms (SNPs) by 2b-RAD technology. The total length of the consensus map is 5553.43 cM with the average marker interval of 1.92 cM. The map has a good collinearity with both the grass carp draft genome and the zebrafish genome, and it assembled 89.91% of the draft genome to a chromosomal level. Additionally, according to the growth-related traits of progenies, 30 quantitative trait loci (QTLs), including 7 for body weight, 9 for body length, 5 for body height and 9 for total length, were identified in 16 locations on 5 linkage groups. The phenotypic variance explained for these QTLs varies from 13.4 to 21.6%. Finally, 17 genes located in these regions were considered to be growth-related because they either had functional mutations predicted from the resequencing data of the parents. CONCLUSION: A high density genetic linkage map of grass carp was built and it assembled the draft genome to a chromosomal level. Thirty growth related QTLs were detected. After the cross analysis of Parents resequencing data, 17 candidate genes were obtained for further researches.


Assuntos
Carpas/crescimento & desenvolvimento , Carpas/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Animais , Peso Corporal/genética , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Sintenia , Peixe-Zebra/genética
10.
Microb Pathog ; 147: 104358, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32599138

RESUMO

BACKGROUND: Reactive oxygen species (ROS) are generated incidentally during natural metabolism process of aerobic photosynthetic organisms which could be either harmful for cellular components. How ROS regulated lipid metabolism and the transcriptomes of stressed cells respond to ROS in aerobic photosynthetic organisms are unclear. Glutathione peroxidases (GPXs) detoxify hydrogen peroxide or organic hydroperoxides, which are important enzymes of the antioxidant system. So the function of GPXs matters the cellular redox state. How the lipid metabolism respond to the GPXs deficiency remains to be explored. METHODS: In this study, we employed a Chlamydomonas reinhardtii gpx5 knockout mutant to examine the effects of ROS on lipid metabolism. The redox state and lipid content of the parental strain CC4348 and the gpx5 mutant were detected. Besides, the transcriptomes of CC4348 and the gpx5 mutant were sequenced before and after treatment with nitrogen-free medium to obtain genome wide respond. Then we performed the functional annotation, classification and enrichment analysis based on KEGG database for the differentially expressed genes (DEGs) before and after nitrogen deprivation of CC4348 and the gpx5 mutant. RESULTS: In the CC4348 cells, the lipid accumulated accompanying with increasing ROS level after treatment with nitrogen-free media. However, in the gpx5 mutant, the ROS level is much higher than that in the parental strain CC4348, unexpectedly with reduced lipid accumulation. By comparing the transcriptomes of CC4348 and gpx5 mutant, we found that both CC4348 and gpx5 mutant cells displayed upregulation of transcripts related to protein, nucleic acid, carbon metabolism and chlorophyll biosynthesis, but more proportion of genes related to lipid metabolism were up-regulated in CC4348 than that in the gpx5 mutant. CONCLUSION: In CC4348, lipid metabolism was up-regulated with increasing ROS level. But in the gpx5 mutant, Lipid accumulation was less with higher ROS level, which was due to the inhibited lipid biosynthesis. Therefore, ROS provides dual-directional regulation of lipid metabolism induced by GPX5 in Chlamydomonas.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Metabolismo dos Lipídeos , Espécies Reativas de Oxigênio
11.
Fish Shellfish Immunol ; 97: 204-215, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31843701

RESUMO

Foodborne enteritis has become a limiting factor in aquaculture. Plant protein sources have already caused enteritic inflammation and inhibition in growth performance. Attempts have been made to find an effective solution to foodborne enteritis. Based on the previously suggested fish cholinergic anti-inflammatory pathway, galantamine, a typical cholinesterase inhibitor, was tested for the repression of pro-inflammatory cytokines for soybean meal induced enteritis by injection into grass carp. Both the phylogenetic analysis of cholinesterase, AchR and bioinformatic prediction, indicated galantamine's potential use as an enteritis drug. The result highlighted galantamine's potential effect for anti-enteritis in fish, especially in carps. Subsequently, a 4-week feeding trail using galantamine as an additive, in a zebrafish soybean meal induced enteritis model, demonstrated the prevention of enteritis. The results demonstrated that galantamine could prevent intestinal pathology, both histologically and molecularly, and also maintain growth performance. Reflected by gene expressional analysis, all mechanical, chemical and immune functions of the intestinal barrier could be protected by galantamine supplementation, which aided molecularly in the control of fish foodborne enteritis, through down-regulating Th17 type proinflammatory factors, meanwhile resuming the level of Treg type anti-inflammatory factors. Therefore, the current results shed light on fish intestinal acetylcholine anti-inflammation, by the dietary addition of galantamine, which could give rise to protection from foodborne enteritis.


Assuntos
Acetilcolina/fisiologia , Carpas , Inibidores da Colinesterase/farmacologia , Enterite/veterinária , Doenças dos Peixes/prevenção & controle , Doenças Transmitidas por Alimentos/veterinária , Galantamina/farmacologia , Glycine max/efeitos adversos , Ração Animal/análise , Animais , Inibidores da Colinesterase/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Enterite/induzido quimicamente , Enterite/imunologia , Enterite/prevenção & controle , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/imunologia , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/imunologia , Doenças Transmitidas por Alimentos/prevenção & controle , Galantamina/administração & dosagem
12.
Mol Biol Evol ; 34(1): 51-65, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702774

RESUMO

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection.


Assuntos
Drosophila melanogaster/genética , Sequências de Repetição em Tandem , Sequência de Aminoácidos , Animais , Dineínas do Axonema/genética , Evolução Biológica , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Conversão Gênica , Duplicação Gênica , Genes de Insetos , Variação Genética , Masculino , Família Multigênica , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
13.
Fish Shellfish Immunol ; 81: 304-308, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30030114

RESUMO

In bony fish, CD40 and CD154 are two very important costimulatory molecules involved in T and B cell cooperation in thymus-dependent antibody production. In the current study, we identified the cDNAs of CD40 and CD154 and analyzed their genomic structures in grass carp. Quantitative real-time PCR indicated that the CD40 and CD154 were mainly expressed in immune organs. After challenge with grass carp reovirus (GCRV), these two genes were up-regulated at 72 h in head kidney and spleen. Moreover, seven and five single nucleotide polymorphisms (SNPs) were identified in the CD40 and CD154 respectively. Statistical analysis indicated that three SNPs in the coding region of the CD40 were significantly associated with the resistance of grass carp against GCRV. These results indicated that CD40 and CD154 play important roles in the responses to GCRV in grass carp. The SNP markers in the CD40 associated with the resistance to GCRV may facilitate the disease-resistant breeding of grass carp.


Assuntos
Antígenos CD40/genética , Ligante de CD40/genética , Carpas/genética , Doenças dos Peixes/genética , Infecções por Reoviridae/genética , Animais , DNA Complementar/genética , Resistência à Doença/genética , Polimorfismo de Nucleotídeo Único , Infecções por Reoviridae/veterinária
14.
Infect Immun ; 84(4): 1226-1238, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857572

RESUMO

Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection.


Assuntos
Galinhas , Salmonella typhimurium/genética , Seleção Genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia
15.
Mol Biol Evol ; 31(10): 2557-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24951729

RESUMO

MicroRNAs (miRNAs) are endogenous RNA molecules that regulate gene expression posttranscriptionally. To date, the emergence of miRNAs and their patterns of sequence evolution have been analyzed in great detail. However, the extent to which miRNA expression levels have evolved over time, the role different evolutionary forces play in shaping these changes, and whether this variation in miRNA expression can reveal the interplay between miRNAs and mRNAs remain poorly understood. This is especially true for miRNA expressed during key developmental transitions. Here, we assayed miRNA expression levels immediately before (≥18BPF [18 h before puparium formation]) and after (PF) the increase in the hormone ecdysone responsible for triggering metamorphosis. We did so in four strains of Drosophila melanogaster and two closely related species. In contrast to their sequence conservation, approximately 25% of miRNAs analyzed showed significant within-species variation in male expression levels at ≥18BPF and/or PF. Additionally, approximately 33% showed modifications in their pattern of expression bias between developmental timepoints. A separate analysis of the ≥18BPF and PF stages revealed that changes in miRNA abundance accumulate linearly over evolutionary time at PF but not at ≥18BPF. Importantly, ≥18BPF-enriched miRNAs showed the greatest variation in expression levels both within and between species, so are the less likely to evolve under stabilizing selection. Functional attributes, such as expression ubiquity, appeared more tightly associated with lower levels of miRNA expression polymorphism at PF than at ≥18BPF. Furthermore, ≥18BPF- and PF-enriched miRNAs showed opposite patterns of covariation in expression with mRNAs, which denoted the type of regulatory relationship between miRNAs and mRNAs. Collectively, our results show contrasting patterns of functional divergence associated with miRNA expression levels during Drosophila ontogeny.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , MicroRNAs/genética , Animais , Sequência Conservada , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Masculino , Dados de Sequência Molecular , Filogenia , Caracteres Sexuais
16.
PLoS Genet ; 8(2): e1002475, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319453

RESUMO

Why gene order is conserved over long evolutionary timespans remains elusive. A common interpretation is that gene order conservation might reflect the existence of functional constraints that are important for organismal performance. Alteration of the integrity of genomic regions, and therefore of those constraints, would result in detrimental effects. This notion seems especially plausible in those genomes that can easily accommodate gene reshuffling via chromosomal inversions since genomic regions free of constraints are likely to have been disrupted in one or more lineages. Nevertheless, no empirical test has been performed to this notion. Here, we disrupt one of the largest conserved genomic regions of the Drosophila genome by chromosome engineering and examine the phenotypic consequences derived from such disruption. The targeted region exhibits multiple patterns of functional enrichment suggestive of the presence of constraints. The carriers of the disrupted collinear block show no defects in their viability, fertility, and parameters of general homeostasis, although their odorant perception is altered. This change in odorant perception does not correlate with modifications of the level of expression and sex bias of the genes within the genomic region disrupted. Our results indicate that even in highly rearranged genomes, like those of Diptera, unusually high levels of gene order conservation cannot be systematically attributed to functional constraints, which raises the possibility that other mechanisms can be in place and therefore the underpinnings of the maintenance of gene organization might be more diverse than previously thought.


Assuntos
Inversão Cromossômica/genética , Cromossomos/genética , Drosophila/genética , Ordem dos Genes/genética , Homeostase/genética , Animais , Evolução Biológica , Sequência Conservada/genética , Fertilidade/genética , Genoma de Inseto/genética
17.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 35(1): 81-7, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25790680

RESUMO

OBJECTIVE: To observe the anti-renal fibrosis effect of Paidu Baoshen Pill (PBP) on 5/6 nephrectomized rats and to explore its mechanism. METHODS: Totally 50 SD male healthy rats were randomly divided into the normal control group (n = 10), the sham-operation group (n = 10), and the nephrectomy model group (n = 30) according to the proportion of 1:1:3. Rats in the sham-operation group had their renal capsule isolated without nephrectomy. Rats in the nephrectomy model group had their kidneys 5/6 nephrectomized. Then 24 h urine was collected and 24 h urinary protein (24 h UP) detected. Serum blood urea nitrogen (BUN) and serum creatitine (SCr) were also tested. According to the SCr level 30 rats of the model group were further randomly divided into the model group, the PBP group, and the Niaoduqing Granule (NG) group, 10 in each group. Rats in the PBP group and the NG group were respectively administered with PBP (at the daily dose of 1.0 g/kg) and NG (at the daily dose of 3.33 g/kg) by gastrogavage (they were dissolved in distilled water). At the same time, 2 mL distilled water was administered by gastrogavage to rats in the normal control group, the sham-operation group, and the nephrectomy model group, once daily for 4 successive weeks. Mental conditions, activities, hair color, shape of stool, and the body weight were observed during administration. After 4 weeks, urine was collected to detect 24 h UP. Blood was sampled to detect SCr, BUN, transforming growth factor ß1 (TGF-ß1), type III procollagen (PC III), collagen type IV (Col IV), laminin (LN), and fibronectin (FN). After rats were killed, their left remnant renal tissues were collected for pathological examinations. The protein expression quantity of TGF-ß1 and FN was detected by immunohistochemical method. mRNA expression levels of TGF-ß1 and FN were detected using real time fluorescent quantitative PCR. RESULTS: There was no statistical difference in the above indices between the normal control group and the sham-operation group (P > 0.05). Compared with the sham-operation group, rats' general condition was poorer in the model group, their body weight grew slower, and 24 h UP increased; serum levels of BUN, SCr, TGF-ß1, PC III, Col IV, LN, and FN increased; the residual renal pathological lesion was serious; expression levels of TGF-ß1, TGF-ß1, mRNA, FN, and FN mRNA increased in the renal tissue (all P < 0.01). Compared with the model group, rats' general condition was better, their body weight grew faster, 24 h UP reduced (P < 0.05), blood levels of BUN and SCr decreased significantly (P < 0.01), serum levels of TGF-ß1, PC III, CoL IV, LN, and FN decreased (P < 0.05, P < 0.01); the residual renal pathological lesion was attenuated in the PBP group and the NG group; expression levels of TGF-ß1, TGF-ß1, mRNA, FN, and FN mRNA decreased (P < 0.01). Compared with the NG group, blood levels of SCr and FN, and expression levels of FN and FN mRNA decreased more in the PBP group (P < 0.05). CONCLUSIONS: PBP had the effect of anti-renal fibro- sis in 5/6 nephrectomized rats. Down-regulating expression levels of TGF-ß1, and FN from gene transcription and protein translation levels might be one of its mechanisms.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Nefropatias/tratamento farmacológico , Animais , Nitrogênio da Ureia Sanguínea , Colágeno Tipo IV , Fibronectinas , Rim , Laminina , Masculino , Nefrectomia , Ratos , Fator de Crescimento Transformador beta1
18.
Sci Data ; 11(1): 286, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461307

RESUMO

The progress of aquaculture heavily depends on the efficient utilization of diverse genetic resources to enhance production efficiency and maximize profitability. Single nucleotide polymorphisms (SNPs) have been widely used in the study of aquaculture genomics, genetics, and breeding research since they are the most prevalent molecular markers on the genome. Currently, a large number of SNP markers from cultured fish species are scattered in individual studies, making querying complicated and data reuse problematic. We compiled relevant SNP data from literature and public databases to create a fish SNP database, FishSNP ( http://bioinfo.ihb.ac.cn/fishsnp ), and also used a unified analysis pipeline to process raw data that the author of the literature did not perform SNP calling on to obtain SNPs with high reliability. This database presently contains 45,690,243 (45 million) nonredundant SNP data for 13 fish species, with 30,288,958 (30 million) of those being high-quality SNPs. The main function of FishSNP is to search, browse, annotate and download SNPs, which provide researchers various and comprehensive associated information.


Assuntos
Bases de Dados Genéticas , Peixes , Genômica , Polimorfismo de Nucleotídeo Único , Animais , Peixes/genética , Genoma , Reprodutibilidade dos Testes
19.
Biology (Basel) ; 13(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392318

RESUMO

Parentage assignment is a genetic test that utilizes genetic characteristics, such as molecular markers, to identify the parental relationships within populations, which, in commercial fish farming, are almost always large and where full information on potential parents is known. To accurately find the true parents, the genotypes of all loci in the parentage marker set (PMS) are required for each individual being tested. With the same accuracy, a PMS containing a smaller number of markers will undoubtedly save experimental costs. Thus, this study established a scheme to screen low-redundancy PMSs using the exhaustive algorithm and greedy algorithm. When screening PMSs, the greedy algorithm selects markers based on the parental dispersity index (PDI), a uniquely defined metric that outperforms the probability of exclusion (PE). With the conjunctive use of the two algorithms, non-redundant PMSs were found for more than 99.7% of solvable cases in three groups of random sample experiments in this study. Then, a low-redundancy PMS can be composed using two or more of these non-redundant PMSs. This scheme effectively reduces the number of markers in PMSs, thus conserving human and experimental resources and laying the groundwork for the widespread implementation of parentage assignment technology in economic species breeding.

20.
iScience ; 26(4): 106539, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091248

RESUMO

With the rapid expansion of transcriptome studies in many fishes, a great number of RNA-seq data have been published, allowing for a more systematic understanding of the general profiles and details of gene expression in fish. FishGET is dedicated to gathering and curating fish RNA-seq data to discover more new RNAs, including mRNA and lncRNA, thereby getting a more complete reference transcriptome and providing more comprehensive and accurate transcriptome annotations. We obtained a total of 1362 RNA-seq paired-end data of 8 fishes from 97 different studies, and then we performed transcript assembly, meta-assembly, weighted gene co-expression network analysis (WGCNA), functional annotations, neighbor location annotation, lncRNA type annotation, homology annotation. To promote research into fish genes at the transcriptional level, we developed a user-friendly web interface that allows users to view all information and makes use of multiple types of dynamic interactive visualization services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA