Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3946, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477701

RESUMO

Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.


Assuntos
Caderinas/genética , Córtex Cerebral/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Proteínas com Domínio T/genética , Animais , Caderinas/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos Knockout , Camundongos Transgênicos , Protocaderinas , Interferência de RNA , Sinapses/metabolismo , Proteínas com Domínio T/metabolismo
2.
Nat Neurosci ; 20(4): 516-528, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250409

RESUMO

The thalamus connects the cortex with other brain regions and supports sensory perception, movement, and cognitive function via numerous distinct nuclei. However, the mechanisms underlying the development and organization of diverse thalamic nuclei remain largely unknown. Here we report an intricate ontogenetic logic of mouse thalamic structures. Individual radial glial progenitors in the developing thalamus actively divide and produce a cohort of neuronal progeny that shows striking spatial configuration and nuclear occupation related to functionality. Whereas the anterior clonal cluster displays relatively more tangential dispersion and contributes predominantly to nuclei with cognitive functions, the medial ventral posterior clonal cluster forms prominent radial arrays and contributes mostly to nuclei with sensory- or motor-related activities. Moreover, the first-order and higher-order sensory and motor nuclei across different modalities are largely segregated clonally. Notably, sonic hedgehog signaling activity influences clonal spatial distribution. Our study reveals lineage relationship to be a critical regulator of nonlaminated thalamus development and organization.


Assuntos
Linhagem Celular/fisiologia , Proteínas Hedgehog/fisiologia , Tálamo/crescimento & desenvolvimento , Animais , Diferenciação Celular/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Células-Tronco/fisiologia , Tálamo/fisiologia
3.
Neuron ; 92(1): 31-44, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27710787

RESUMO

Progenitor cells in the medial ganglionic eminence (MGE) and preoptic area (PoA) give rise to GABAergic inhibitory interneurons that are distributed in the forebrain, largely in the cortex, hippocampus, and striatum. Two previous studies suggest that clonally related interneurons originating from individual MGE/PoA progenitors frequently form local clusters in the cortex. However, Mayer et al. and Harwell et al. recently argued that MGE/PoA-derived interneuron clones disperse widely and populate different forebrain structures. Here, we report further analysis of the spatial distribution of clonally related interneurons and demonstrate that interneuron clones do not non-specifically disperse in the forebrain. Around 70% of clones are restricted to one brain structure, predominantly the cortex. Moreover, the regional distribution of clonally related interneurons exhibits a clear clustering feature, which cannot occur by chance from a random diffusion. These results confirm that lineage relationship influences the spatial distribution of inhibitory interneurons in the forebrain. This Matters Arising paper is in response to Harwell et al. (2015) and Mayer et al. (2015), published in Neuron. See also the response by Turrero García et al. (2016) and Mayer et al. (2016), published in this issue.


Assuntos
Linhagem da Célula , Células Clonais/fisiologia , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Prosencéfalo/citologia , Animais , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA