Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 33(24): 6038-6045, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28555496

RESUMO

Core-shell structured nitrogen-doped porous carbon@silica material with uniform structure and morphology was synthesized via a sol-gel method. During this process, a commercial triblock copolymer and the in situ formed pyrrole-formaldehyde polymer acted as cotemplates, while tetraethyl orthosilicate acted as silica precursor. The synergetic effect of the triblock copolymer and the pyrrole-formaldehyde polymer enables the formation of the core-shell structure. Herein, the pyrrole-formaldehyde polymer acted as not only the template, but also the nitrogen-doped carbon precursor of the core. The obtained core-shell structured porous material possesses moderate Brunauer-Emmett-Teller specific surface area (410 m2 g-1) and pore volume (0.53 cm3 g-1). Moreover, corresponding hollow silica spheres or nitrogen-doped porous carbon spheres can be synthesized by calcining the core-shell structured material in air or etching it with HF. The X-ray photoelectron spectroscopy results reveal that the nitrogen states of the obtained material are mainly pyridinic-N and pyridonic-N/pyrrolic-N, which are beneficial for carbon dioxide adsorption. The carbon dioxide uptake capacity of the nitrogen-doped carbon spheres can reach 12.3 wt % at 273 K and 1.0 bar, meanwhile, the material shows good gas adsorption selectivities for CO2/CH4 and CO2/N2.

2.
Nanotechnology ; 28(49): 495701, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28990580

RESUMO

Lithium-sulfur batteries have attracted great concern because of the high theoretical capacity of sulfur (1675 mA h g-1). However, the poor electrical conductivity and volumetric expansion of sulfur along with the dissolution of lithium polysulfides largely limit their practical application. In this study, nitrogen-doped graphene aerogel (NGA) with high nitrogen content and porosity is used as a host for the impregnation of sulfur. The effects of sulfur impregnation on the specific surface area, pore volume, and microstructure of NGA supported sulfur composite (S@NGA) are well investigated. Furthermore, NGA is also processed into a NGA film, which is sandwiched between a separator and S@NGA cathode. The lithium-sulfur battery with such a configuration delivers a high reversible capacity of 1514 mA h g-1 at 0.1 C, excellent rate performance (822 mA h g-1 at 2.0 C), and good cycling stability (946 mA h g-1 at 0.5 C even after 100 cycles). The enhanced electrochemical performance can be ascribed to the introduction of the NGA interlayer, the unique interconnected porous structure, and strong interaction between the three-dimensional nitrogen-doped graphene network and the homogeneously dispersed sulfur and/or lithium polysulfides.

3.
ACS Appl Mater Interfaces ; 7(3): 1431-8, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25545306

RESUMO

Nitrogen-doped graphene has been demonstrated to be an excellent multifunctional material due to its intriguing features such as outstanding electrocatalytic activity, high electrical conductivity, and good chemical stability as well as wettability. However, synthesizing the nitrogen-doped graphene with a high nitrogen content and large specific surface area is still a challenge. In this study, we prepared a nitrogen-doped graphene aerogel (NGA) with high porosity by means of a simple hydrothermal reaction, in which graphene oxide and ammonia are adopted as carbon and nitrogen source, respectively. The microstructure, morphology, porous properties, and chemical composition of NGA were well-disclosed by a variety of characterization methods, such as scanning electron microscopy, nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy, and Raman spectroscopy. The as-made NGA displays a large Brunauer-Emmett-Teller specific surface area (830 m(2) g(-1)), high nitrogen content (8.4 atom %), and excellent electrical conductivity and wettability. On the basis of these features, the as-made NGA shows superior capacitive behavior (223 F g(-1) at 0.2 A g(-1)) and long-term cycling performance in 1.0 mol L(-1) H2SO4 electrolyte. Furthermore, the NGA also possesses a high carbon dioxide uptake capacity at 1.0 bar and 273 K (11.3 wt %).

4.
Nat Commun ; 5: 4716, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25178835

RESUMO

Porous graphene, which features nano-scaled pores on the sheets, is mostly investigated by computational studies. The pores on the graphene sheets may contribute to the improved mass transfer and may show potential applications in many fields. To date, the preparation of porous graphene includes chemical bottom-up approach via the aryl-aryl coupling reaction and physical preparation by high-energy techniques, and is generally conducted on substrates with limited yields. Here we show a general and scalable synthesis method for porous graphene that is developed through the carbothermal reaction between graphene and metal oxide nanoparticles produced from oxometalates or polyoxometalates. The pore formation process is observed in situ with the assistance of an electron beam. Pore engineering on graphene is conducted by controlling the pore size and/or the nitrogen doping on the porous graphene sheets by varying the amount of the oxometalates or polyoxometalates, or using ammonium-containing oxometalates or polyoxometalates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA